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Summary of Significant Findings.

In a) 1, we articulate via an example from reliability, the difference between the notions
of probability, chance, likelihood, vagueness, belief and plausibility. To the best of our
knowledge, it is the only document that carcfully makes a distinction between these
intertwined notions, and states clearly what each of these terms mean and when to usc
them.

In a) 2, we introduce the notion of a vague system; i.e. a system that can simultaneously
exist in more than one state. This is done via thc mathematics of many valued logic. The
traditional approach in system theory is via binary logic; it is limited in scope.

In a) 3, we make the important argument that when predicting remaining life, what
matters most is the likelihood, not the probability modcl. This paper digs dcep into the
meaning of conditional probability and shows how one can arrive upon different
predictions.

In a) 5, we address the important practical question of what should the coverage
probability for a prediction interval be. Should it be 90%, 95%, or something else? We
argue that this is a problem in optimal decision making, a matter that has been totally
overlooked.

In a) 7, we introduce a necw fundamental notion, namely that of a hazard potential. We
argue that items fail when suitably chosen stochastic processes hit the hazard potential.

The chosen stochastic processes depend on the environment in which units and systems
operate.

In a) 9, we harness the thesis of a) 7 to argue that degradation is an abstract notion, but its
observable markers are things like crack growth, wear, and CDA cell counts. We then
make clear the meaning of competing risks and view them as stochastic processes. This
is a chance in the manner in which one thinks of competing risks and degradation.

In b) 1, we summarize our research over the past several years, much, if not all, supported
by the ONR, in reliability and survival analysis, and systems survivability. This book, we
think is unique because it represents a paradigm shift in how one should think about
reliability and survivability, and because unlike the existing books on the subject, it
dwells into uncharted territories on several fronts. The point of view taken here is
Bayesian and notions like the failure rate, survival, and systems integrity are intcrpreted
from this perspective. The book also discusses the use of expert testimonies and
information theoretic notions in failure data analysis and the design of life tests.
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In our day-to-day discourse on uncertainty, words like belief, chance, plausible, likelihood and probability are commonly encountered.
Often, these words are used interchangeably, because they are intended to encapsulate some loosely articulated notions about the
unknowns. The purpose of this paper is to propose a framework that is able to show how each of these terms can be made precise,
so that each reflects a distinct meaning. To construct our framework, we use a basic scenario upon which caveats are introduced.
Each caveat motivates us to bring in one or more of the above notions. The scenario considered here is very basic; it arises in both
the biomedical context of survival analysis and the industrial context of engincering rehiability. This paper is expository and much of
what-is said here has been said before. Howevcr, the manner in which we introduce the material via a hierarchy of caveats that could
arise in practice, namely our proposed framework, is thc novel aspect of this paper. To appreciate all this, we require of the rcader a
knowledge of the calculus of probability. Howcver, in order to make our distinctions transparent, probability has to be interpreted

subjectively, not as an objective relativc frequency.

Keywords: Belief functions, biometry, likelihood, plausibility, quality assurance, reliability, survival analysis, uncertainty, vagueness

1. Probability and chance

1.1. Introduction: Statement of the problem and objectives

Consider the following archetypal problem that commonly
arises in the contexts of biomedicine, engineering and the
physical sciences.

Suppose that at some reference time 7, thc “now time,”
YOU are asked to predict the time to failure 7 of some
physical or biological unit. The capitalized YOU is to em-
phasize the fact that it is a particular individual, namely
yourself, that has been asked to make the prediction. To fa-
cilitate prediction, you examine the unit carefully and learn
all that you can about its genesis: how, when and where it
was made. You dcnotc this information by H(z), for history
at time 7. In the case of biological units, () would pertain
to genetic and/or medical information. Supposc, as is gen-
erally true, that based on 7{(t) you conclude that prediction
with certainty is not possible. Consequently, you are now
faced with two options: walk away from the problem, or
make an informed guess about 7.

Suppose that you choose the second option and are pre-
pared to make guesses about the event (7" > (), for some
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t > 0. In reliability, ¢ > 0 is known as the “mission time.”
There are several additional caveats to this basic problem
that go into forming our overall framework; these will be
presented in Sections 2 and 3. In Section 2, we introduce
the caveat of data, and in Section 3 the caveat of surrogate
information.

To keep the mathematics simple, you introduce a counter,
say X, and adopt the convention that X = 1 (a “success”)
whenever T > ¢, and X = 0 (a “failure”), otherwise. Thus,
the events (7" > t) and (X = 1) are isomorphic; however,
there is a loss of granularity in going from T to X, This
is because X continues to equal one,even when 7' > ¢ + a,
foranyandalla > 0. With thc introduction of X, informed
guesses about (T > ¢) boil down to informed guesses about
(X =1). But what do we mean by an informed guess, and
how shall we make this operational? Do the terms proba-
bility, chance and likelihood constitutc an informed guess,
or does each of these termas connote a distinct notion? Fur-
thermore, do these terms cover all the scenarios of uncer-
tainty that one can possibly encounter or are there sce-
narios that call for additional notions such as “belief”
and “plausibility”? The aim of this paper is to show that
each of the above terms encapsulates a distinct notion,
so that their indiscriminate use should not be a matter of
course. '
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1.2. Personal probability: Making guesses operational

By informed guess, we mean a quantified measure of your
uncertainty about the event (X = 1)in the light of H(z), and
subsequent to a thoughtful evaluation of its consequences.
Now, it is generally well acknowledged that probability is
a satisfactory way to quantify uncertainty, and to some,
such as Lindley (1982), the only satisfactory way. There
are several interpretations of probability (c.f. Good (1965)).
The onc we shalladopt is personal probability, alsoknown as
subjective probability. Here, you quantify your uncertainty
about the event (X = 1), based on H(z), by your personal
probability denoted:

Py(X = 1; H(t)). M

The subscript indexing P emphasizes the fact that the spec-
ified probability is that of a particular individual, namely,
you. For convenience, we set 7 = 0 and denote H(0) by sim-
ply H. Henceforth, we also omit the subscript associated
with P, so that Equation (1) is written:

P(X=1,H)=p, @)

where 0 < p < 1. The p so specified is a personal probabil-
ity because it is not unique to all pcrsons; more important,
it can change with time for the same individual. This is be-
cause the background history for this person also changes,
and it is the history that plays a key rolc in specifying a per-
sonal probability. Thus, an informed guess is tantamount
to specifying a p, where p is a personal probability.

'To make an informed guess operational, that is, to make
a pragmatic use of it, we need to interpret p. For this we
appeal to De Finetti (1974) who proposed that p represent
the amount you—the specifier of p—is willing to stake in
a two-sided bet (or gamble) about the event (X = 1). That
is, should X turn out to be one, you receive as a reward
one monetary unit against the p staked out by you. Should
X turn out to be zero, then the amount staked, namely
p, is lost. By a two-sided bet, we mean the willingness to
stake p for the event (X = 1), or an amount (1 — p) for the
cvent (X = 0). That is, you are indifferent between the two
gambles: one monetary unit in exchange for p if (X = 1),
or one monetary unit in exchange for (1 — p) if (X = 0). It
is useful to bear in mind that in keeping with the spirit of
the individual nature of personal probability, the amount
p represcats your stake. For the same event (X = 1), your
colleague may choose to stake a different amount p, with
P # p. It is also important to notc that with p interpreted
as a gamble, the bet will only be settled when X reveals
itself. Thus, bets can only be made opcrational for events
that are ultimately observed. We do not consider here the
disposition of the second party in the bet; we assume that
the second party is willing to accept any bet put forth by
you.

Thus, to summarizc, in the context of this paper, the word
“probability” is used to denote the amount an individual
is prepared to stake in a two-sided bet about an uncertain
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event. This probability can be specified based on H alone,
and it is not essential that H contain data on items judged to
be similar to the item in question. That is, personal probabil-
ities can be specified without the benefit of having observed
data.

1.3. Chance or propensity: A useful abstraction

Whercas specifying a personal probability can be done
solely by introspection considering H, amore systematicap-
proach, which involves breaking the problem into smaller,
easier problems, begins with invoking the law of total prob-
ability on the event (X = 1;H). Specifically, for some un-
known quantity 8, 0 < 8 < 1, and an entity r(¢; H), whose
interpretation is given later in Section 1.4:

1
P(X:l;’H):/ PX = 1{0:;H)w@:;H)de, (3)
0

4)

if you assume that X is independent of H given #. That
1s, were you to know 6, then knowledge of H is unneces-
sary. The meaning of 6, known as a parameter, remains to
be discussed, but for now we state that in the language of
personal probability, Equation (3) implies an extension of
the conversation from P(X = 1; H)to P(X = 1| 8;H). The
idea hcre is that aficr invoking the assumption of indepen-
dence, you may find it easier to quantify your uncertainty
about (X = 1) were you to know 6, than quantifying the
uncertainty based on H. Whereas the dimension of H can
be very large, the dimension of 6 is one. Thus, the role of
the parameter @ is to simplify thc process of uncertainty
quantification by imparting to X independence from H.

In Equation (4), thc quantity P(X =1 | 8) is known as a
probability model for the binary X. Following Bernoulli,
you let P(X =1|68) =6, where P(X =1]86) represents
your bet (personal probability) about the event (X = 1)
were you to know 8. This brings us to the question of what
does 8 mean? That is, how should we intcrpret 6?

The meaning of # was made transparent by De Finetti
(c.f. Lindley and Phillips (1976)) in his now famous thcorem
on binary exchangeable sequences. Loosely speaking, this
theorem says that if a large number of units judged similar
to each other (the technical term is exchangeable) and to
the unit in question were to be observed for their survival
or failure until ¢, and if X; = 1 if the ith item survived until
t (X; = 0 otherwise), then:

R
o= S A

that is 6 is the average of the X;s, when the number of X;s is
infinite. De Finetti refers to this 8 as a chance or propen-
sity. Note that there is no personal element involved in
defining 6, other than the fact that § derives from the be-
havior of exchangeable sequences, and exchangeability is a

1
. f P(X = 1| 6)(0: H)do,
0

©®)
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judgment. What you judgc to be exchangeable may not sit
well with your colleagues. Because § connotes the limit of
an exchangeable binary sequence, 8 can be scen as an ob-
jective entity. More important, since 8 cannot be actually
observed (n in the Equation (5) is infinite), we claim that
chance is an abstract construct. It is a useful abstraction
all the same, because in writing P(X =1 | ) =8, you are
saying that your stake on the uncertain event (X = 1) is 4,
were you to know . But no one can possibly tell you what
@ is, and this is what leads us to the next section. But before
we do so, it may be of interest to mention a few words about
two other interpretations of 9. :

One is due to Laplace, who in keeping with the scientific
climate of his time, and being influenced by Newton, was
concerned with cause and effect relationships. Accordingly,
to Laplace, 8 was the cause of an effect, namely, the event
(X = 1). The second interpretation of g stems from the rel-
ative frcquency interpretation of probability. Indeed, here
@ is taken to be the probability that X = 1.

Finally, even though the notion of chance introduced
here has been in the context of binary variables, a parallel
notion also exists for other kinds of variables.

1.4. Probability of chance: Taking chances with chance

Since @ is unknown, and in principle can never be known,
you are uncertain about 8. In keeping with the dictum that
all uncertainty be described by probability, you let Py(® <
9; H) encapsulate your bet on the event (8 < 8). Here, in
keeping with standard convention, all unknown quantities
arc dcnoted by capital letters and thcir realized values by
the corresponding small letter; thus our use of ® and 4.
Since © can take all values in the continuum (0, 1), we shall
assume that Py(© < 8;H) is “absolutely continuous,” so
that its density at 8 exists, for 0 < 8 < 1. We denote this
density by 7y (8; H) and interpret it as

n(0;H)d0 ~ P9 < © <8 +dg; H).

For convenience, the subscript Y has been dropped.

Thus, 7(8; H)d4 is approximately your personal proba-.

bility that the unknown chance © is in the interval [6, 8 +
dg). Since 4 will never be known, the bet on ® cannot
be settled. However, since 7 (8;H) goes into determining
P (X = 1; H)—see Equation (6) below—and since bets on
(X = 1;'H) can be settled, 7(8; ) can also bc interprcted
as a technical device that helps you specify your bet on an
observable.

With the above in place, plus the fact that in our case
P(X =118) =6, Equation (4) becomes:

1
P(X:];H):p:/ 8 x = (0; H)d8. (6)
0
Equation (6) above is noteworthy. It embodies: (i) a per-
sonal probability about the event (X = 1)—the left-hand
side; (1) a chance © taking the value &; and (iil) a per-
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sonal probability about thc chance © belonging to the
interval [, 8 + df}—the entity = (9; H)d#. This equation
helps usmake transparent the difference between probabil-
ity, chance and the probability of chance.

There is another angle from which Equation (6) can be
viewed. This comes from the fact that the right-hand side of
Equation (6) is your expected value of ©, the expected value
being determined by your 7 (8; H). Denoting this expected
value by Ey(©), we have;

PX =1,H)=p = Ex(©),

implying that your personal probability for the event (X =
1) is your expected value of the chance ® with respect to
7(f; H), your personal probability about chance.

2. The likelihood of chance

2.1. Introducing the caveat of data

We supplement the framework of the basic problem of Sec-
tion 1.1 by introducing our first caveat. Suppose that in ad-
dition to H(7), you also have at hand the binary x;, ..., x,,
where x; = 1 if the life-length of the ith item has actually
been obscrved to exceed £, and x; =0, otherwise. The n
items that go into constituting the data x = (x3, ..., X;)
are judged by you, prior to observing the x, to be similar
(or exchangcable) to the item in question. What can you
now say about the unobserved X? In other words what is
your prediction for thccvent (X = 1) in the light of H(z) as
well as x? Certainly, the observed x should help you sharpen
your prediction. Consequently, you are now called upon to
assess P(X = 1;x, H).

One possibility would be to think hard about all that
you have at hand, namely, X and H, and then simply spec-
ify P(X = 1;x, H) as p*, where p* € (0, 1). Here p* encap-
sulatcs your bet on the event (X =1) in the light of x
and H. If p* happens to be identical to the p of Equa-
tion (2), then you are declaring the opinion that the data
x has not had a sufficient impact on your beliefs for you
to change your bet from your original p. From a philo-
sophical point of view, there is nothing in the theory of
subjective probability that stops you from specifying a p*
by introspection alone. However, from a computational
point of view, it is efficient to proceed formally along the
lines given below, because introspection to specify p* sub-
sequent to having specified p may lead to an inconsistency
(technically incoherence). By incoherence, we mean a sce-
nario involving a gamble in which “heads I win, tails you
lose.”

2.2. Bayes’ law: The mathematics of changing your mind

To address the scenario presented in Section 2.1, you start
by pondering the matter of assessing your uncertainty about
(X = 1), in the light of H, were you to know (but do not
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know) the disposition of Xj,..., X,; here X; =1, if the
ith item judged to be similar to the item in question has
a life-length that exceeds ¢t (X; = 0, otherwisc). That is,
what would be your P(X = 11X, ..., X, H)? To address
this question, you follow the same line of reasoning used to
arrive upon Equation (4), that is, extend the conversation
to 8, and obtain

1
p(X:ux,,...,x,,;m.—.f PX=116.X,....X)
0
x 76| X1, ..., Xn; H)d6,
1
=f P(X =116)x 7@\ X, ..., X.: H)d6,
0

1
= f 6 x 781X, ..., Xo; H)d6. @
0

The second equality is a consequence of your judg-
ment that X is independent of X, ..., X,, were you to
know @, and the third a consequence of choosing P(X =
1|68) =6 as a probability model for X. The quantity
76Xy, ..., X H) is the probability density at 8 of your
PO <0lXy,..., XnH).

To obtain 7 (0|X), ..., X»; H) you invoke Bayes’ law;
thus:

T@| X1, ..., H) X P(Xq, ..., X0 | 0;H) x 7(6; H)

=[] PXi=x16)x n6;H), (8)
=1
by the multiplication rule, and by the independence of the
X;s from each other, were you to know 6, and with x; = 1
or 0. For P(X; = x; | 8), you once again choose Bernoulli’s
model, so that P(X; = x; | 8) = 6%(1 — 6)' =,
With the above in place, you now have:

w@lXn ..., X H) < [ [ {61 —6) 2} = (;H). (9
i=1

Since 7(8; H) encapsulates your uncertainty about ® in
the light of H alone, and 7(8| X3, ..., X,; H) your uncer-
tainty about it were you to be provided additional informa-
tion via the Xj, ..., X,, we say that Bayes’ law provides a
mathematical prescription for changing your mind about
the unobservable ©. Once Equation (9) is at hand we may
incorporate it in Equation (7) to write:

PCX = XX s X HE)
1 n
x / 91—[[9"‘(1'-9)1”""}7r(0;7{)d9, (10)
0 i=1

as a prescription of how to change your mind about the
event (X = 1) itself.

2.3. Likelihood function: The weight of evidence

There are two aspects of Equations (8) to (10) that need
to be emphasized. The first is that-the left-hand sides of
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thesc cquations pertain to conditional events, namcly the
proposition that “were you to know the disposition of the
X, i=1,...,n";thatis, supposing you were provided with
the realizations of each X;. The second feature is that they
inform the reader as to how you express your uncertainties
(or bets) about ® and X respectively, once the X;s reveal
themselves as x;. Implicit to this bet is your particular choice
of probability models (X = x | 8)and P(X; = x; | 6), i =
) S 2

In actuality, however, the X;s have indeed revealed them-
selves in the form of data, as x = (xy, ..., x,), where each
x; is known to you as being one or zero. In view of this,
the left-hand sides of Equations (8) to (10) should be re-
written as 7 (6; xq, ..., X, HYand P(X = 1;xy, ..., x,, H)
respectively. But more significant is the fact that the quan-
tity P(X; = x; | 8) of Equation (8) can no longer be inter-
preted as a probability. This is because the notion of prob-
ability is germane only for events that have yet to occur, or
for events that have occurred but whose disposition is not
known to you. In our case, X; is known to you as x; = 1 or
xi = 0,thus P(X; = x; | 6)isnota probability. So what does
the quantity P(X; = x; | 8) = 6%(1 — 6)! =%, with x; fixed as
zero or ong, and 6 unknown, mean? Similarly, in the context
of Equation (9) with r = 37 | x;, what does the quantity:

n

[J{e7 -0} =o' 1 —0y",

i=1

(11

with n and r known, but § unknown, mean? Note that r is
the total number of successes.

As a function of #, with n and r fixed, the quantity
6"(1 — 8y is called the likelihood function of 6; it is de-
noted, £y(0; n, r), the subscript, which will hcnceforth be
dropped, signaling the fact that like probability, the like-
lihood function is also personal. Since £(0;n,r) is not a
probability, the likelihood function, even though it is de-
rived from a probability model, is not a probability. It can
be viewed as a function that assigns weights to the differ-
ent values ¢ that © can take, in the light of the known
n and r; these latter quantities can be viewed as evidence.
Thus, the likelihood function can be interpreted as a func-
tion that prescribes the weight of evidence provided by the
data for the different values that chance © can take. For ex-
ample,withn =r =1, L(8;n = r = 1) = 6, this suggests—
see Fig. 1-—that with n =r = 1, more weight is given by
the likelihood function to the large values of  than to the
smaller values.

To summarize, the expression P(X; = x; | 6) = 6%(l —
#)!~x, specifics a probability of thc cvent (X; = x;) when
X; is unknown, and 6 is assumed known; whereas with
X; known as x;, it specifies a likelihood for the unknown
6. With x known, Equation (10) when correctly written
becomes:

P(X = 1;x, 'H)a/le(e'(l —0Y ") x w(0; H)de. (12)
0



16

LBn=r=1) 1
or Weight

Values of 8
0 1

Fig. 1. The likelthood function withn =r = 1.

Equation (12) is interesting. It encapsulates, as we rcad
from left to right, the four notions we have introduced thus
far: personal probability (the left-hand side); chance (the
parameter 0); the likelihood of chance (the quantity 8" (1 —
#)"~7); and the probability of chance (the quantity x(8; H)).

Note also that the right-hand side of Equation (12) is
the expected value of a function of ®, namely, the function
©r+1(1 — ). Thus, we may say that the effect of the data
x is to change your bet on the event (X = 1) from Ey(6G) to
Ey(®r+l(1 _ @)n—-r)_

3. Imprecise surrogates: motivation for vagueness
and belicf

In Section 1 we outlined a problem that is the focus of our
discussion, and in Section 2 we added a feature to it by
bringing in the role of data. The notions used in Sections 1
and 2 are probability, chance and likelihood. Are these the
only ones needed to address all problems pertaining to un-
certainty? Are there circumstances that pose a challenge to

_us in terms of being able to lean on these notions alone? If
so, what are these, and under what scenarios do we need to
go beyond what has been introduced and discussed? The
purpose of this section is to address the above and related
questions. But first we bring into play our second caveat
and explore the circumstances under which the notions of
probability, chance and likelihood will suffice to address
this caveat. The caveat in question pertains to the presence
or not of detectable anomalies during inspection, quality
control and other diagnostic testing functions.

3.1. Anomalies: A surrogate of failure

To keep our discussion simple, suppose that in order to
assess your uncertainty about the event (X = 1), you have
atyour disposal 7 and also a knowledge of the presence or
the absence of a detectable anomaly. An anomaly could be a
visiblc defect, or noticeable damage, or some other suitable
indicator of imperfection. Anomalies could be present and
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Anomaly {tem Survives
Detected - To Time ¢
(Y=1) (x=1)
Anomaly Item Faila
Not Detected By Time t

(¥ =0) (X=0)

Fig. 2. Effect of anomalies on survival.

yet not be detected. We denote the presence of a detected
anomaly by letting a binary variable Y take the value one;
the absence of a detcctablc anomaly by letting ¥ = 0. The
presence of an anomaly does not necessarily imply that X
will be zero; similarly, its absence is no assurance (to you)
that X will be one; see Fig. 2. Rather, like the X3, ..., X, of
Section 2, the presence or absence of a detectable anomaly
helps you sharpen your assessment of the uncertainty about
(X =1).

Suppose then, that ¥ = y has been observed, with y = 1
or 0, and that you are required to assess P(X = 1; 3, H). A
simple way to proceed would be to treat y as a part of H,
and upon careful introspection specify:

PX=4Ly H)=p, 0<p<l,

as your bet on the event (X = 1). The p above is like the
p of Section 1, in the sense that if p = p, then y has had
no effect on your disposition about (X = 1). There is, of
course a more systematic way to incorporate the effect of y
into your analysis, and this involves a use of the likelihood.
To see how, start by pondering the matter of assessing your
unccrtainty about the cvent (X = 1), in the light of H, were
you to know (but do not know) the disposition of Y. Thisis
what was also done in Section 2.2. That is, you ask yourself
what P(X = 1|Y; H) should be? By Bayes’ law:

PX =1Y;H) & (Y = y|X = ;) x P(X = 1;H),

y = land 0. For P(X = |; H) you may use your p of Equa-
tion (2). To procced furthcr, you need to specify a probabil-
ity model for Y, conditional on (X = 1). That is, you need
tospecify P(Y = 11X = 1;H)and P(Y = 0| X = 1; H); this
is tantamount to specifying a joint distribution for X and
Y. Once this can be done, you have:

X =1« (¥ =ylX =1;H)xp.  (13)
However, in actuality, ¥ has been observed as y =1 or
y = 0. Consequently, Equation (13) becomes

PX =1y, H) < L(X =1y, H) x p, (14
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where £(X = 1;p, H) is your likelihood function for the
unknown event (X = 1) in the light of the evidence y and
H. The probability model P(Y = y|X = 1; H) helps you
specify the likelihood. Equation (14) says that your bet on
the event (X = 1) in the light of y and H, is proportional
to your bet on (X = 1) based on # alone, multiplied by
your likelihood. The approach prescribed above is more
systematic than the one involving the specification of p
based on introspection alone, because it incorporates the p
of Equation (2). A key point to note is that L(X = 1;y, H)
is the likelihood of an observable event; it is not the like-
lihood of chance @ discussed in Section 2.3. Should you
prefer to work with the likelihood of chance, then you must
introduce chance into your.pondcring. To do so, you may
proceed as follows:

1
PX =1|Y;H) = / P(X =116, Y;) x 28] Y; H)do,
0

which extends the conversation to g, as was done to arrive
at Equation (3). If you now assume that (X = 1) is inde-
pendent of both Y and 7{, were you to know 8, and assume
Bernoulli’s model, then:

1
P(X=1}Y;H)=/ 0 x n(0]Y;H)dA.  (15)
0

But by Bayes’ law:
@)« P(Y=y|6;H) x(6:H).  (16)

Conscquently, to proceed further, you need to specify a
probability model for the anomaly Y, were you to know
0, and also 7(8; H), an cntity that has alrcady appeared in
Sections 1 and 2. Since Y has in actuality been observed (as
y =l ory =0), Equation (16) becomes:

7(8;y, H) x L(G;y, H) x n(8; H),

where £(0; y, H) is the likelihood function of the chance G,
in the light of H and evidence about the anomaly y. With
the above in place Equation (15) becomes:

1
PX =1y, H) oc/ ¢ x L(G;y, H) x n(68; H)ds.
0

To compare the above equation with Equation (14) (their
left-hand sidcs are the samc), we notc that sincc p = E(®),
Equation (14) may also be written as

1
P(X = I;y,'H)cx/ 8 x L(X = 1;, 1) x 7(6; H)do.
0

The last two equations signal the fact that in order to
incorporate the effect of the detected anomalies into the
assessment of your uncertainty about (X = 1), you should
be prepared to either specify the likelihood of (X = 1) in
the light of y (and H), or the likelihood of 9 in the light of
y (and H), whichever is more convenient. To specify these
likelihoods, you may want to specify P(Y = y|X = 1; H)
or P(Y = y | 8; 1), probability models for Y, were you to
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know X or 9, respectively. Of these, the former may be easier
to assessthan the latter, since it is based only on observablcs.
We shall therefore focus on the case P(Y = y|X;H), and
refer to it as a postmortem probability model.

3.2. Eliciting postmortem probabilities: Potential obstacles

The material of Sections 1 and 2 required of you the spec-
ification of P(X = x | §) and n(6; H), for x =1 or 0. For
the former, Bernoulli’s model is a natural choice; for the
latter, a beta density with parameters « and g is a choice
with much flexibility. Thus, for0 <8 < I:

P(X =x|6)=06%( -6,

and
C(a+ B)
T@)rg)

Coming to the scenario of Section 3, you are required
to specify the above, and also a model for the postmortem
probability P(Y = y|X = x;H), for x, y = 1 or 0. The lat-
ter could pose two difficulties. The first is that you should
be able to probabilistically relate detectable anomalics and
failure; Fig. 2 with the direction of the arrows reversed
could provide guidance. The second—a bigger problem—
can arise because of the fact that the absence or the presence
of any trait which qualifies as an anomaly may not be easily
determined. For example, both a surface scratch and a dent
qualify as defects, but the former could be less deleterious
to an item’s survival than the latter. Also, at what point
does a rough scratch get labeled as a dent? The classifica-
tion of an anomaly is therefore not crisp, so that the event
“anomaly” is not well defined. It is this lack of crispness
that motivates a consideration of “vagueness™ as another
aspect of uncertainty quantification; morc on this will be
said in Section 4.

One manifestation of this absence of crispness is that re-
sponses to questions for eliciting postmortem probabilities
tend to be unhelpful. The following two responscs from an
actual scenario are illustrative.

7@, H) = n(6;a, f) = 8°7'(1 — gy,

1. “If the unit works, there is a less than 20% chance that
we would havc dctected an anomaly. If it does not, we
would be seeing something 20-40% of the time.”

2. “If it works, that means that it was well manufacturcd.
If it does not, then it means that it was handled poorly
when it was shipped.”

Clcarly, pinning down postmortcm probabilities from
statements like the two above is not possible. At best state-
ment | can provide bounds on the postmortcm probabili-
ties, and statement 2 has no probabilistic content whatso-
ever. Yet statements 1 and 2 provide information, albeit not
in the form required by the calculus of probability.

To summarize, as long as the event “anomaly” is well de-
fined so that one is able to precisely specify the postmortem
probabilities, the development of Section 3.1 can be used,
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and to do so all that one needs are the notions of proba-
bility, chance and likelihood. Once difficulties of the type
discussed above come into play, postmortemn probabilities
cannot be elicited. When such is the case, the notions of
“vagueness” and “belief” enter the arena of uncertainty
quantification. We emphasize that we do not see these no-
tions as a prelude to supplanting probability; rather, they
enhance probability by making its use more encompassing.
However, to some, like Zadeh (1978), the notion of vague-
ness invites alternatives to probability, a matter upon which
we disagree.

4. Harnessing vagueness: Uncertainty quantification
under imprecision

What do we mean by the term “vagueness”? Is it synony-
mous with the term “imprecision”? How do vagueness and
imprecision enter the arena of uncertainty quantification?
These are some of the questions that we aim to address
in this section. We shall use the scenario of anomalies dis-
cussed in Section 3 as a point of discussion.

-4,1. Fuzzy sets and the uncertainty of classification

As a preamble, recall that in Section 3.1, Y was a binary
variable taking valuesy = Oory = 1, with ¥ = 0(1) denot-
ing the absence (presence) of a detectable anomaly. Declar-
ing that ¥ = 0 or 1 is often a judgment call, which does not
encapsulate the degree of the anomaly. In this seetion wc
refine the above process by introducing some granularity to
the valucs y that Y can take. To do so, we let ¥ denote some
undesirable characteristic of the item in question that can
be quantified—for instance the depth of a scratch—and al-
low Y to take a continuum of values y in some well-defined
range, say R = [0, M], where M is specified. Let 4, a subset
of R, bethe set of all ys that lead to thc assessment that the
item in question has an anomaly. Now if there exists a value
y* such that for any y > y* an anomaly is declared, then 4
is called a crisp (or a sharp) set; crisp to reflect the fact that
A has well-defined boundaries. Consequently, any y can be
placed with precision in the set A4, or its complement. Crisp
sets are said to adhere to the law of the excluded middle,
in the sense that any y cither does belong or docs not be-
long to 4. However, if it is not possible to identify a y* of
the kind described above, then a boundary of 4 is not well
defined. Consequently, we are unable to classify the mem-
bership of certain ysin 4 with definitiveness (or precision).
Such ys can simultaneously belong and not belong to A.
Sets which exhibit the property of having boundaries that
are not sharp are said to be fuzzy. Fuzzy sets do not ad-
here to the law of the excluded middle. In the context of the
scenario considcred here, one may not be able to classify,
with definiteness, certain defects as being anomalies. That
is, there could arise, in practice, scenarios in which there is
an uncertainty (in a subject matter specialist’s mind) about
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classifying a defect as being an anomaly or not, and also
an unwillingness (of the specialist) to assign probabilities
to the uncertainty of classification.

To summarize, fuzzy sets are those whose boundaries are
not wcll defincd, and imprecision pertains to an inability
to place with certainty every element of a set, such as R,
into its fuzzy subset such as A. That is, imprccision is a
consequence of vagueness.

The Kolmogorov axiomatization of probability is devel-
oped onthe premise that probability measures be defined on
sharp sets ((c.f. Billingsley (1985), p. 20)). Thus, the appear-
ance of fuzzy sets requires of us ways to develop approaches
whereby probabilities can be endowed to fuzzy sets as well.
A strategy for doing so is via the introduction of “mem-
bership functions” which, though not probabilistic, can be
seen as a subject matter specialist’s classification “probabil-
ities.” Membership functions are discussed in Section 4.2
and their use for inducing probabilities on fuzzy sets dis-
cussed in Section 4.3. As a final reminder, it is important
to keep in mind that the material of Sections 4.2 and 4.3
will not come into play if the event “anomaly” can be well
defined.

4.2, The membership function of a fuzzy set

The membership function of a fuzzy set {f encapsulates the
degree to which any y € R belongs to 4. It is denoted by
w4 (»), for every y. It is important to note that u ;(y) is not
a probability, because 3 11 7(y) need not be one; however,
it is often the case that 0 < u 5(y) <1, for all y. Opera-
tions with fuzzy sets, such as unions, intersections and com-
plements are facilitated by the membership function. Like
probability, the membership function is subjectively speci-
fied, and may change from person to person. The member-
ship function of a crisp set is an identity function; i.e., if 4 is
acrisp set, then g 3() =0 for y < y* and u () = 1, oth-
erwise. For the scenario of anomalies considered here, with
y encapsulating the magnitude of a dcfect, p ;(y) would be
of the form illustrated in Fig. 3. Small values of y would
certainly not be viewed as an anomaly and large values cer-
tainly would. For the intermediate values of y, i ;(») shows
the extent to which y would be judged (by one particular
individual) to be an anomaly. :

4.3. Endowing probabilities to fuzzy sets

By endowing probabilitics to fuzzy sets we mcan assess-
ing our personal probability that Y belongs to A in the
light of the membership funetion u 4(y). For this wc first
need to assess our personal probability that Y reveals it-
self as y—that is our probability that the outcome of Y
is y—and our personal probability that the revealed y be-
longs to 4. Supposing Y to take discrete values, we de-
note the above personal probabilities by Py(Y = y) and
Py(y e A) respectively. The need for this latter probability
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Fig. 3. Membership function of a fuzzy set A.

entails a philosophical argument whose roots can be traced
to Laplace. By interpreting p ;(y) as a likelihood function
and invoking Bayes’ law, Singpurwalla and Booker (2004)
go through some standard technical manipulations to eval-
uate the constants of proportionality and to argue that:

PyY € A;1;30)
B l—pi(y)  Py(y ¢ A)
? [] N w i) * Py(y € A)

See Equatioﬁ (10) of Singpurwalla and Booker (2003).

=i
] P(Y=y). (I7)

4.4. Assessing failure probability with imprecisely
specified anomalies

With Equation (17) in place, it is a relatively straightforward
matter to obtain an analogue of the postmortcm probability
when the elassification of anomalies is imprecise, as

P(Y € AIX; p i)
B 1 - pi(y)
= [1 * O

y

P(y ¢ A)
P(y € A)

-1
]‘ P(Y =y|X), (18)

where for convenience the subseripts associated with all the
Ps have been omitted. The key difference between Equa-
tions (17) and (18) is in the last term. The former entails an
unconditional probability for Y; the latter, a conditional
probability that Y reveals itself as y, given X, the dispo-
sition of an item’s status—surviving or failed. Note that
P(Y =y | X) is like the postmortem probability of Sec-
tion 3.1, save for the fact that Y can now take a range of
values y, instead of it being zero or onc.

To assess an item’s survival probability were an impre-
cisely specified anomaly to be declared as Y € A4, we con-
sider the analogue of Equation (13). Specifically, we have:

PX=1YeAH)xP(YeA|X=1u;00)xp,
(19
where the middle term is given by Equation (18), and as
before, p is our prior probability that (X = 1).
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Equation (19) forms the basis of assessing the item’s sur-
vival probability when the presence of an anomaly is ac-
tually declared, but not the extent of the defect that is be-
lieved to result in an anomaly. That is, we are not given the
value of y. In thiscase P(Y € A|X = I; w1 ;(»)) is viewed as
the likelihood and the left-hand side of Equation (19) be-
comes P(X = 1; Y € A, 'H), the required probability. Con-
sequently, Equation (19) leads us to

PX=1LYeAdM X =1Yecd p;(y)xp,
(20)
which 1s our personal probability that (X = 1), given the
presence of an anomaly that is vaguely specified.

5. A reason to belicvc

Sections 3 and 4 required of us the specification of a con-
ditional probability P(Y = y | X = x; H) and the member-
ship funetion p 3(y), y € [0, M], as a way of dealing with
vagueness and anomalies. What if vagueness and other rea-
sonsereate an unwillingness to specify the conditional prob-
ability but a willingness to specify a marginal probability
P(Y = y; H)?

The notion of “belief” was introduced by Dempster
(1967) as a way of dealing with such partial specifications.
Dempster’s development is articulated via a key feature of
axiomatic probability theory, namely, that in order to in-
duce probability measures from a probability measure space
to another measure space it is necessary that the mapping
from the former to the latter be a many-to-one map. As an
example, a random variable is a many-to-one map. Conse--
quently, its probability distribution function can be induced
from the probability measure space on whieh the random
variable is defined. When the mapping is a one-to-many
map—as is the case with our anomaly (see Fig. 2)—the in-
duced mcasure will no more be a probability measure. For
a more detailed appreciation of this argument, we refer the
reader to Wasserman’s (1990) cxcellent exposition; parts of
itarereproduced in the Appendix. The induced measure not
being a probability measure, alternate labels for it become
germane. Dempster’s choice of a label is Basic Probability
Assignment (BPA).

With respect to the problem at hand, suppose that we are
able toelieit personal probabilities of the type P(Y = y; H),
y =1lor0,asp, and (1 — p,) respectively. Given p,, and thc
mapping of Fig. 2, how may we describe our uncertainty
about the survival (or failure) of the item to time ¢? That
1s, how may we express our uncertainty about the event
X=x)forx=10r0?

The “belief function” approach of Dempster starts by
noting that the mapping from ¥ = y to X = x is a one-to-
many map. In particular, if I denotes the mapping from the
Y-space to the X-space, then (Y =1)={X =1, X =0}.
Thatis, thesingleton (Y = 1)mapsintotheset{X = 1, X =
0} via the map T'; in other words, I" is a sef-valued map,
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similarly with I'(Y = 0). However, in order to make the
essence of our development more transparent, we supposc
that I'(Y = 0) = (X = 1). This means that the absence of
an anomaly is tantamount to the item’s success. In other
words, the mapping from ¥ = 0 to the X-space is a one-to-
one map. Consequently, in Fig. 2, the arc joining the nodes
(Y =0) and (X = 0) needs to be removed.

With the above in place, the next step in the development
of the belief function approach is to induce measures of un-
certainty from the Y-space to the X-space. Recall, that it 1s
only the Y-space that has been endowed with probability as
the measure of uncertainty. Since the X-space has only two
elements, {X = 1) and (X = 0), F(X), the measure space
(i.e., the set of all sets) generated by X, has four elements,
namely:

FX)={{$}, (X =1},{X =0}, {X¥ =1, X =0}}.

With (Y =1)={Y=1,X=0and T(Y =0)=(X =
1), the induced measure, say m, on F(X) will be of the
form: m{p) =0, m(X =1)=P(Y =0 =1—p,, mX =
0)=0andm{X =1,X =0} = P(Y = 1) = p,. Recall that
in Dempster’s terminology, the m(e)s constitute 2 BPA. It is
easy to verify that m possesses the following two properties:
. m(¢) =D0,and for F € F(X), 3 perex)m(F) = 1. However,
m 1s not countably additive and thus is not a probability
. measure. To make m a probability measure we should be
prepared to apportion p, between the events (X = 1) and
X =0).

Once the BPAs are in place, the belief function induced
by themap I" on F(X) is defined , for any F, G € F(X) as

bel(F) = > m(G),

GSF

and bel(F) is then considered as a quantified measure of
uncertainty about ¥. Thus for our problem at hand bel(X =
1) =1 —p,, whereas bel(X = 0) = 0; also, bel{X =1, X =
0}=1—p,.

Dempster has also introduced the dual of the belief
function, called the plausibility function, where for any
F e F(X):

pl(F) = 1 — bel(F°);

F*is the complement of F. For our problem at hand pl(X =
1) =1, whereas pl(X = 0) = p,.

To make these ideas operational, that is, to make a prag-
matic use of them, we need to interpret bel(s) and pl(s).
Using bets, bel(X = 1) is the most you are willing to pay
for a bet on (X = 1): if bel(X = 1) = 1 — p,, you arc will-
ing to pay at most 1 — p, to receive one monetary unit if
(X =1). pl(X = 1) is (1—the most you are willing to pay
for a bet on (X = 1)°):if pl(X = 1) = 1, you are not willing
to pay anything to bet on (X = 1)° = (X = 0). However, as
pointed out by a referee, Walley (1991) has argued that it is
misleading to interpret the belief and plausibility functions
as betting rates.
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5.1, Summarizing “beliefs”

By way of a closure, we claim that the notion of belief, or its
dual plausibility, comes into play when joint probabilities of
the type P(Y = 1, X = 1, H) cannot be elicited, and when
the marginal probabilities of the type P(Y = 1;H) = p.
cannot be apportioned in a one-to-many map. Intuitively,
the uncertainty measure bel(e) seems reasonable; it can be
seen as a lower bound on probability. When the mapping
under discussion is a one-to-one or a many-to-one, belief
and probability agree, and thus the belief function will obey
the rules of probability. We may conclude by saying that
there is a price to be paid for not being able to elicit the
required conditional probabilities, and the price is to for-
sake the notion of probability and its accompanying virtues.
Dempster has also proposed rules for combining uncertain-
ties, the details about which can be found in Shafer (1976)
or in Wasserman (1990).
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Appendix

Belief and plaustbility

In order to gain an appreciation of the notion of “belief”
and its dual “plausibility,” it is best that we start off with a
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look at the essentials of how to measure theoretic probabil-
ity. This we do below via the following seven steps, each of
which serves as a prelude to the next step. We assume of the
reader some familiarity with these steps. From Step 8 and
onwards, our discussion highlights arguments necessary to
motivate the notions of belief and plausibility.

Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Let (2, F(£2), 1) be a probability measure space,
with @ as an element of 2, and u assessed for all
members A of F(£2).
Let (X, F(X)) be some measure space with x as
an element of X. This is our space of interest.
Let B C X; since F(X) is a o-field generated by
X, B e F(X).
Our aim is to endow the space (X, F(X)) with a
measure that encapsulates our uncertainty about
any B, where B C X, or about a singleton x, where
x € X,should X have countable elements. Ideally,
our measure of uncertainty should be a probabil-
ity.
The measure that we endeavor to endow
(X, F(X)) with, should bear some relationship to
the measure w. This is because we have been able
to assess probabilities on the space (2, F(Q)); 1.e.,
we are prepared to place bets only on members of
F().
In order to be able to do the above, we should
connect the spaces (2, F(R), u) and (X, F(X)).
This connection can be made in several ways, two
of which are indicated below:
(i) a mapping from € as the domain, to X as the
range, or :
(i1) a mapping from 2 as the domain, to F(X) as
the range.
The standard approach is 6 (i) above; this is what
leads us to the notion of a real-valued random vari-
able, say Z.

Specifically, we take X to be the real line
R, or a countably infinite set of integers / =
{0, %1, 42,...}, or a countably finite set of
integers Iy = {0, +1,...,£N}. When X =R,
F(X) = B(X)—the Borelsets of R. When X = I,
then F(X) is the power set of Iy.

Suppose that X = R. Then Z is a mapping with
domain €2 and range R. Furthermore, Z is a many-
to-onemap from €2 to R. Specifically, forevery w €
Q, there is one and only one Z(w), and Z(w) € R.
However, we do allow for the possibility that for
any two (or more) oy, w; € 2, Z(w) = Z(wy).

Now, a (fortunate) consequence of the many-
to-one map Z is that such a map is able to induce
a probability measure, say u*, on (X, F(X)) (orto
put it more correctly on (R < F(R))). Specifically,
for any a € R, the set (Z(w) < a) € F(X), and

pwZw) <a)=plwe Q: Z(w) < a},

Step 8.

Step 9.
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is a probability measure of the set (Z(w) < a).
Consequently, we now have a probability measure
space (X, F(X), ©*) in addition to our original
probability measure space (2, F(S2), ).

Thus with a many-to-one map, we are able to

describe our uncertainties about events of interest
in F(X) via a probability p*, with 1* being based
on pu.
Suppose now that the connection between the
spaces (2, F(£2), p) and (X, F(X)) is established
via a mapping I' whose domain is © (as before)
but whose range is F(X) instead of X. That is,
Qr'—F(X). More specifically, for every o € £,
I'(w) = B, where B € F(X).

If we assume that the above mapping is many-
to-one, in the sense that every w € € gets mapped
to one and only one set B (where B may or may
not be a singleton), then this mapping is known as
a many-to-one set-valued map. When such is the
case " is also able to induce a probability measure,
say u**, onthespace (F(X), F(F (X)), u**), wherc
F(F(X)) is a o-field of sets generated by F(X).
Consequently, for any set C € F(F(X)):

p*(C) = plw € 2 : I'(w) = C}.

Thus, to summarize, a many-to-one set-valued
map is also able to induce a probability measure
w** on the space (F(X), F(F(X))), assuming that
the latter space is of interest to us. But what about
the space (X, F(X))? This after all, is our spacc of
interest.

The fact that I" is a many-to-one set-valued map
onF(X)istantamountto thefact that I'isa many-
to-many point-valued map on X. In particular, if
X =R and F(X) = B(R), then T" is a many-to-
many real-valued map on R. Consequently, for
every w €  , I'(w) can take any and all values
in an interval, say Z, where 7 € B(R). Inducing
a probability measure on Z or any subset of Z
boils down to smearing pu(w), the probability mea-
surc on o, over Z. How should this mcasure be
smeared? What if one is unwilling to specify a
strategy for smearing (or distributing) r(w) over
Z7? When such is the case we are unable to induce a
probability measure from the space (2, F (), )
to (X, F(X)). As a consequence, an alternative
measure called plausibility, abbreviated pl(e), has
been proposed on F(X). But before examining
pl(e), it may be useful to better articulate this mat-
ter of smearing p(w) by looking at a special case
of Z, namely an Z consisting of a countable num-
ber of elements, say two; denote these by {x;, x3}.
Suppose that ' "1{x;, X} = ; then p(w)is the in-
duced probability measure of {x;, x,}. Howevcr,
to induce a probability measure on x; or x;, we
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Step 10.

need to split (apportion) p(w) in some logical and
meaningful manner.

To summarize, whenever the map connecting

two measure spaces is a many-to-one set-valued
map, or 2 many-to-one point-valued map, a prob-
ability measure can always be induced from the
domain space to the range space. Probability mea-
sures cannot be induced when the mapping is a
one-to-many, or a many-to-many, point-valued
map, unless additional assumptions are made.
When such assumptions cannot be made, a com-
promise has to be struck and upper and lower
probabilities enter the foray of uncertainty assess-
ment. These are discussed below.
Consider the subset B of X. Suppose that there
does not exist an induced probability measure
from (2, F(2), 1) to B. That i1s, B and w € £,
such that I'(w) = B.

Now consider a set C € F(F(X)) with the fea-
ture that C N B # ¢; suppose that C is the only
set in F(F(X)) that intersects with B. Since C ¢
F(F(X)), u**(C)is known. Let wy, wy, ..., @, be
suchthat I'(w;) = C, i =1, ..., n. Then, theplau-
sibility of B, denoted pl(B) is the (probability)
measure pl(B) = pfw, ..., w,}. Alternatively put

pl(B) = piw € ©;T'(w) = Cand BN C # ¢}.

The above expression generalizes when more than
one set intersects B. For example, suppose that
BNGC #£ ¢, fori=1,...,k, with C; e F(F(X)).
Then:

pl(B) = pu{w € 2;'(w) = C;and
BOGE$, i=1,....k).

Since there are several sets C; that intersect with
B, there are overlapping ws in the definition of

Singpurwalla and Wilson

pl(B). Consequently, it is also called an “upper
probability.”

Step 11. A notion dual to pl(e)—in a sense to be explained
later—is bel(e); here
bel(B)=ul{w € Q;I'(w)=C;, C; C B, i=1,...,k}.
Bel(B) is a lower probability, with 0 < bel(B) <
pl(B) < 1. Also, bel(B) = 1 — pl(B°).

The measures pl(e) and bel(e) are not probabil-
ity measures in the sense that:
bel(4 U B) > bel(A4) + bel(B);

i.e., because of an overlap of ws, bel(s) is super-
additive.
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Summary

The state of the art in coherent structure theory is driven by two assertions, both of which are
limiting: (1) all units of a system can exist in one of two states, failed or functioning; and (2) at
any point in time, each unit can exist in only one of the above states. In actuality, units can exist in
more than two states, and it is possible that a unit can simultaneously exist in more than one state.
This latter feature is a consequence of the vicw that it may not be possible to precisely define the
subsets of a set of states; such subsets are called vague. The first limitation has been addressed via
work labeled ‘multistate systems’; however, this work has not capitalized on the mathematics of
many-valued propositions in logic. Here, we invoke its truth tables to define the structure function
of multistate systems and then harness our results in the context of vagueness. A key contribution
of this paper is to argue that many-valued logic is a common platform for studying both multistate
and vague systems but, to do so, it is necessary to lean on several principles of statistical inference.

Key words: Consistency profile; likelihood function; membership functions; reliability; probability;
maintenance management; natural language; degradation modeling; decision making and utility.

1 Introduction and Overview

The calculus of coherent systems, innovated by Bimbaum ef al. (1961) has served as a
mathematical foundation for a theory of systems. Here, one explores the effcct that a system’s
components have on the system. The bulk of the effort, however, has been devoted to the case
of binary states with precise classification. That is, the components and the system can (at any
point in time) be in one of two unambiguously defined states, functioning or failed. In actuality,
items can function in degraded states, and thesc could be a discrete set or a continuum of states.
An cxamplc of the former is a load-sharing system, like a transmission line for power with r
strands. As the strands break, the rope transitions from its ideal load carrying capability to its
complete disintegration (Smith, 1983). An example of the latter is a precipitator for reducing air
pollution whose cleaning efficiency rangces from (almost) 100 to 0% (Matland & Singpurwalla,
1981). Systems that can exist in more than two states are called multistate systems.

There are two interrelated aims to this paper. The first is to contributc to the mathematics
of multistate systems with precise classification via many-valued logic. To set the stage for
this, we overview some key notions and results in the reliability theory of binary systems.

© 2008 The Authors. Journal compilation © 2008 International Statistical Institute. Published by Blackwell Publishing Ltd, 9600 Garsington Road,
Oxford 0X4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.
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Section 1.2 is archival; however, Section 1.3 is current in the sense that it incorporates the view
that, when discussing system reliability, one needs to distinguish between probability (which is
personal) and propensity (which is-physical), and that the assumption of the independence is
conditional upon propensities. The second aim of this paper is to argue that multivalucd logic also
provides a framework for assessing the reliability of binary or multistate systems with imprecise
classification. Imprecision (or vagueness) is articulated in Section 1.4; Section 1.5 is a guide to
thc rest of this paper.

1.1 Preamble: Notation and Terminology

Consider a system with n components. The system and each of its components can exist in
several states in S € [0, 1]. Let X;, i = 1, ..., n denote the statc of component | at time t >
0, and denote X = (X}, ..., X,). Binary systems are those for which S = {0, 1}, whcre 1 (0)
denotes a functioning (failed) state. The state of the system is a function of X, called the ‘structure
function’. We denote by ¢(X) the structure function for a binary system. The structure function
for a system with multiple states will be denoted by {/(X). We assume that the component and
system states belong to the same set S; e.g. X; € S and ¢(X) € S. However, it is possible that
the X;’s belong to [0,1] whereas ¢(X) can only take values in {0,1}.

1.2 The Calculus of Binary Systems with Precise Classification

The following is an overview of the calculus of binary systems (Barlow & Proschan, 1975);
we generalize this construction in Sections 3 and 4. Let S = {0, 1} with X; = 1 (0) if component
i functions (fails), i = 1, ..., »; similarly, ¢(X) : " — S equals 1 (0) if the system functions
(fails). ¢ is a binary coherent system if (1) ¢ is non-decrcasing in each argument of X, and (2)
each component is relevant. Examples of binary coherent systems are a series system, a parallel
redundant system, and a k-out-of-n system. The dual of a binary coherent system ¢(X) is defined
as pP(X)=1-¢(1 —X),where1 — X =(1 — X},1 — X, ..., 1 — X,). Any binary structure
function ¢ with n components can be decomposed as ¢(X) = X; ¢(1;, X) + (1 — X;) ¢(0;, X), for
allX,i=1,...,n; this is later referred to as the pivotal decomposition. The following notation,
definitions and theorems arc conventional (Barlow & Proschan, 1975):

8 S TR (. N TR 9, |
XY= (R 0%, BT B, oy X IR

where ; U Y, =1—-(1-X)1-Y),i=1,2,...,n
THEOREM 1: For any binary coherent system ¢, ¢sX) = [T, Xi <o) <[], X: £
¢p(X).
THEOREM 2: For any binary coherent system ¢,
X UY) = ¢(X) U p(Y) (1)
and
HX-Y) < ¢(X)- ¢(Y), (2)

with equality holding in equation (1) (equation 2) if and only if the structure function ¢ is
¢ p(ps). Proofs of Theorems 1 and 2 can be found in Barlow & Proschan (1975).
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1.3 Reliability of Binary Systems

Suppose that the X; s are exchangeable, and that p; is the propensity of X; being 1; that s, p; =
lim,_, & Z"' ~ [cf. Lindley & Singpurwalla (2002) or Spizzichino (2001)]. Then, conditional
on p;, our subjectlve probability that X; = 1 is p;, i = 1, ..., n. Unconditionally, P(X; = 1) =
fo pirt(p:)Xdp; = E(p;), where 7 (p;) encapsulates our uncertainty about the propensity p;; i.e.
7 (p;) is our subjective probability of p;. The notions of propensity and subjectivc probability are
articulated in de Finetti’s theorem on exchangeable Bernoulli sequences; see Lindley & Phillips
(1976).

Much of the llterature on the reliability of binary coberent systems is conditional on p;. An
exception is Lynn et al. (1998), in which the analysis is bascd on averaging out py, ..., p, with
respect to a joint distribution. '

Conditional on p = (py, .. ., p»), the reliability of the system is a function of p, say A(p), but
only if the X;’s are (conditionally) independent; i.e. (1) given p = (p1, p2, . . . , P»), X; and X are
independent, V i # j, and (2) given p;, X; is independent of p;, V j # i. Consequently, P(¢(X) =
1| p)=E(¢X) | p) = h(p).

Analogues of the pivotal decomposition and Theorems 1 and 2 follow, asserting that the
reliability of any binary coherent system is bounded below (above) by that of a series (parallel)
system, if the X;’s are conditionally (given p) independent, and redundancy at the component
level is superior to redundancy at the system level when the systems are connected in parallel,
vice versa if in scries; see Barlow & Proschan (1975).

1.4 Vagueness or Imprecision

For purposes of discussion, consider a generic element of S = [0, 1], say x. At any point, we
may be able to inspect the system and declare that ¢r(X) = x. If we are able to place this x in a
well-defined subset of S, then we say that the states of the system can be classified with precision.
There are scenarios, however, where the identification of a state can be done unambiguously, but
the classification cannot; this is the casc of classification with ‘vagueness’.

In the context of coherent systems, vagueness is not synonymous with uncertainty of
performance. Uncertainty of performance is lack of knowledge about the futurc state of the
system, e.g. will the system be functioning 5 hours from now? Vagueness pertains to uncertainty
about classification, i.e. an inability to place any outcome x in a subset of S because the boundaries
of the subset cannot be sharply delineated. Some examples illustrate this point.

Suppose that S = {0, 1, ..., 10}, with each element representing a state in which the system
can exist, ranging from the idcal at 10, to the undesirable at 0. Then what is the subset of ‘good
states’ in §? This subset is not well defined; for example, is 7 a good state? If & were to be
partitioned into ‘good’ and ‘bad’ states, such partitioning being a feature of natural language
(Zadch, 1965), would 5 qualify as a good state or a bad state? More likely, 5 qualifies as both
a good state and a bad state. Thus if /(X) = 5, then the statc of the systcm is simultancously
good and bad. As another scenario, consider an automobile that has 3000 miles on it. Should
this automobile be classified as a ‘new’ or a ‘used’ car? The question of classification arises in
the contexts of setting insurance rates, taxation and warrantics. The subsct of miles that go into
classifying a car as being ‘new’ is not sharply defined; it is imprecise. Most cars sold as being
new have anywhere from 20 to 100 miles—perhaps even more-—on them. In actual practice,
decisions arc oftcn made on the basis of vague knowledge that is relevant, e.g. decisions about
bealth care, maintenance and replacements (see Section 6). As another illustration, medical
treatments are based on classification of ‘high blood pressure’ or ‘bad cholesterol,” and such
classifications fluctuate due to the subjcctivity of interpretation between ‘good’ and ‘bad’. The
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philosopher Black (1939) gives examples from other sciences. Of historical notc is thc famous
example of Schrodinger’s Cat [cf. Pagels (1982), p. 125] from quantum physics. Schrodinger’s
thought experiment pertains to a cat in a sealed radioactive box in outer space which, according to
one school of thought, is simultaneously alive and dead. Examples from the statistical sciences
wherein vague knowledge is relevant are most likely to arise from the behavioral and social
contcxts, such as inferences based on political polling, and medical decisions based on a quality
of life questionnaire (Cox et al., 1992), wherein responses almost always tend to be vague.

The existing theory of both binary and multistate cohcrent systems with precise classification
as its underlying premise is unable to deal with the types of scenarios mentioned above. Some
other concerns have been voiced by Marshall (1994). One idea, namely to classify states by more
than one criterion, precedes ours and we applaud him for this foresight; it makcs a casc for
the viewpoint espoused here.

1.5 Overview of Paper

In Section 2, we give a synopsis of many-valucd logic to include its connectives of negation,
conjunction, disjunction, implication, and equivalencc. In Section 3, we extend the material of
Section 1.2 to the case of multistate systems; i.e. for those components and systems where S
consists of more than two elements. Here, we invoke Lukasiewicz’s (1930) many-valued logic to
define the structurc function of multistate systems, and arrive upon results that are in agreement
with those currently available. The material of Section 3 serves two purposes. One, it shows how
many-valued logic provides a common platform via which the material on multistatc systcms
can be seen. Second, 1t sets the stage for developing the matcrial of Sections 4 and 5, which is
entirely new. A use of many-valued logic is unlike that used by Baxter (1984), El-Neweihi et al.
(1978) and Griffith (1980), whose development centres around binary logic.

Sections 4 and 5 pertain to the scenarios whercin the classification of component and system
states is vague. In both sections, S consists of two vague subsets, and these serve as an analogue
to binary state systems with precise classification. A key tool here is the ‘consistency profile’
introduced by Black (1939). Zadeh’s (1965) ‘membership function’ parallels the notion of a
consistency profile. The harncssing of Lukasiewicz’s many-valued logic with Black’s consistency
profile provides a vehicle for the treatment of vague coherent systems. To do so, however, we
need to lean on aspects of statistical inference and the statistical treatment of expert testimonies.

Scction. 6 relates the material of Sections 4 and 5 to dccision making in maintenance |
management using natural language. Section 7 concludes the paper.

2 Many-valued Logic: An Overview

Binary logic, upon whose foundation the theory of coherent structures has been developed,
pertains to propositions that adhere to the ‘Law of Bivalence’ (or the ‘Law of the Excluded
Middle’): all propositions are either true or false. Lukasiewicz (1930) recognized the exis-
tence of propositions that can be both true and false simultaneously, and thus modified the
calculus of binary propositions to develop a calculus of three-valued propositions. Altcrnatives
exist to Lukasiewicz’s three-valued logic; however, for us, Lukasiewicz’s proposal is most
appealing.

It is important to distinguish between the calculus of probability and the calculus of
three-valued logic. Probability pertains to the quantification of uncertainty about events (or
propositions) that adhere to the Law of Bivalence. Thus we have, as a part of the calculus of
probability, the axiom of additivity. On the other hand, the calculus of many-valued logic is based
on a rejection of the Law of Bivalence. Thc two arc therefore different constructs.
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Table 1 ‘
(a) Truth Table for Lukasiewiczs Y A Z. (b) Truth Table for Lukasiewiczs Y v Z.
Values of Values of
YAZ Proposition Z YvZz Proposition Z
0 12 1 0 172 1
Values of 0 0 0 0 Values of 0 0 12 1
Proposition ¥ 172 0 1/2 172 Proposition ¥ 1/2 172 12 1
1 0 1/2 1 1 1 1 1

Consider two propositions Y and Z, each taking one of three values: 0, % and 1. The negation
of Yis Y =1 — 7, as proposed by Lukasiewicz (1930). When the proposition Y takes the value
1 (0) in a truth table, it signals the fact that the proposition is true (false) with certainty. Values
of Y intermediate to 1 and 0 signal an uncertainty about the truth or the falsity of Y. The value
% is chosen arbitrarily for convenience; any value between 0 and 1 could have been chosen. The
other logical connectives in the three-valued logic of Lukasiewicz arc conjunction, disjunction,
implication and equivalence, denoted (Y A Z), (Y v Z), (Y — Z) and (Y = Z), respectively.
The truth tables for the first two are given in Table 1, and we refer the interested reader to
Malinowski (1993) for further details. Generalizations from the three-valued to the many-valued
case to incorporate propositions that are true or false with various degrees of uncertainty are
straightforward.

73 Invoking 'Many—Valixed Logic for Multistate Systcrxis

3.1 Introduction

The aim of this section is to generalize the case of binary systems with precise classification
to systems that can exist in multiple (m + 1 with m > 1) states. The states are labeled £, j =
0,1,2,...,m,with ] representing a perfect state and 0, the state of total collapse. The intermittent
states of degradation range from =1 to 1 where 1 is the state which is penultimate to the total
failure of the system. Thus, the range of states now takes the form S = {%;j =0,1,2,...,m}
and, by allowing m to be infinite, we are able to consider a continuum of degraded states, in
which case, S C [0, 1]. With S so defined for both the components and the system, what would
be the meaningful choices for the structure function when the system has a series, parallel, or
k-out-of-n architecture?

In the past, several proposed definitions of multistate systems have been made. An overview
of these is in El-Neweihi ez al. (1978) and in Baxter (1984), which to the best of our knowledge
represents the latest endeavors. Considering the fact that these papers appeared over 20 years
ago, one may sense that a satisfactory answer to the above question is available. This may not be
true, however, because all the proposed approaches reduce to a representation in terms of binary
states and, thus, an adherence to binary logic. As an example, Baxter (1984), following Barlow
& Proschan (1975), defines the structure function of a multistate system in terms of the system’s
‘min-path’ and ‘min-cut’ sets, notions which can have an intcrpretation only within the context
of binary systems. By contrast, our proposal here is to use Lukasiewicz’s many-valued logic as
a basis for defining the structure function of multistate systems.

Lukasiewicz’s motivation for introducing a third value, namely %, and his calculus of three-
valued logic was prompted by an uncertainty about the truth or the falsity of a proposition. The
number % did not reflect—in any sense—a degree of uncertainty. Whereas Lukasiewicz did not
appear to have any motivation for his many-valued logic other than the need to generalize, the
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degree of uncertainty interpretation provides a vehicle for extending the three-valued logic. With
this in mind, we may ask whether Lukasiewicz’s calculus can be directly imported to the scenario
of multistate systems when the degraded states can be specified with precision? Our examples
of Table 1 illustrating the three-valued logic suggest that this can be done. More importantly, our
results are consistent with those given in El-Neweihi et al. (1978). Consequently, the Lukasiewicz
logic can be seen as providing a rationale for the existing results on multistate systems, a rationale
that has been missing.

3.2 Definition and Structural Properties

Let X; denote the statc of componenti,i=1, ..., n, and ¥ = ¥ (X) the state of the multistate
system ; X = (X, ..., X;). The X;’s and y(X) take values in S = (£, j =0,1,...,m}.

Definition 1: (Griffith, 1980) ¢ is a2 multistate coherent system if

1.  is non-decreasing in each argument of X,
2. foreachi=1,2,...,n, there exist states 0 < a; < b; < m and a state vector (e;, X) such

that
w(ﬂ, X) <y (b— x);
m m

that is, each component is relevant, and
3. y(L)=Lwherel=(L,L,..., 1)

Properties 1 and 3 of Definition 1 arc consistent with thosc of Barlow & Wu (1978), El-Neweihi
et al. (1978) and Natvig (1982). Property 2 generalizes the notion of relevance.

To use the logic of many-valued propositions for multistate systems, it is necessary to order
the state vector X. Since each X; € {;%, J=0,1,..., m}, we order the X;’s by the values thcy
take. Specifically, let 0 < X1.,) < X2y < -+ < Xigin) < -+ < X(n:n) < 1 denote the ordered
vectors, i.e. X{.,) is the weakest of all the n components and X,.,) the strongest. Consequently,
from Table 1(a), the structure function of a series system is ¥s = min; X; = X(y.»); that is,
the performance of a multistatc scries system is no better than the performance of its weakest
component. If n = 2, and if each X; can take only three values {0, %, 1} with % denoting the
degraded state, then Table 1(a) with ¥ A Z replaced by ¥ (X) and Y (Z) replaced by Xi(X3)
gives us a table for the states of the system, given the states of the components. Figurc 1(a)
displays the state of ¢ 5(X) = ¢s(X1, X2) when X, and X, take binary values, 0 and 1. In contrast,
Figure 1(b) shows the behaviour of v s(X) when X and X, are allowed to take all values in the
unit interval, showing the effect of continuously degrading components on the structure function.
Clearly, yr s(X) provides morc granularity than ¢ g(X).

For a parallel redundant system, ¥ p(X) = max ; X; = X{».); see Table 1(b). This suggests that
the performance of a multistate parallel system is no worse than the performance of its strongest
component. In the three-valued case, the entries of Table 1(b) provide us with a table for thc
states of the system given the states of the components, when n = 2. The state of ¢ p(X) when
X and X, take binary values, 0 and 1, is displayed in Figure 2(a). In contrast, Figure 2(b) shows
the behaviour of ¥ p(X) when X; and X, take all values in [0,1]. Again, y p(X) provides more
granularity than ¢ »(X).

For multistate k-out-of-n systems, we define ¥ x(X) = X(u_x41.0); this definition ensures
consistency among systems, i.e. n-out-of-n systems are denoted ¥ (X) and 1-out-of-n systems
arc denoted ¥ p(X). Intcrestingly, our set-up and definition of a multistate coherent system
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Figure 1. (a) Two-component binary system, ¢s(X). (b) Two-component system, ys(X), with continuously degrading
components. The coordinates are labeled (X1, X2, ¢5(X)) and (X1, X2, ¥ (X)), respectively.
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Figure 2. (a) Two-component binary system, ¢p(X). (b) Two-component system, V¥ p(X), with continuously degrading
components. The coordinates are labeled (X1, X2, ¢ p(X)) and (X1, X2, ¥ p(X)), respectively.

permits the definition of a dual of a binary cohcrent system to hold. The dual of a k-out-of-n
system is ¥ 2(X) = ¥ (k4 1:0)(X), an (n — k + 1)-out-of-n system.

In Lemma 1, the pivotal decomposition for binary structure functions is generalized for (m +
1) precise categories through consideration of their associated indicator variablcs.

LEMMA 1: The following identity holds for every n-component multistate structure function
with precise classification: Y(X) = 3 7o WI(£), XMy _1p Jori=1, ... ,nwhere Iy _;, =
10)if X, = £(X; # £).

Proof. Any multistate structure function, ¥ (X) can be decomposed into a representation that
considers the i-th component scparatcly from the remaining (n — 1) components. In particular
for the multistate component, X; takes only one value from {0, %, ;i—, ey "'—”“,i, 1}. The result
follows.

Theorems 1 and 2 of Section 1 can be generalized for multistate coherent systems. To do so,
we introduce the following additional notation. For X = {Xj, ..., X,}and Y= {Y1, ..., ¥,,},
X <YifX; <Y foreachi=1,...,n As agenerahzation of Thcorem 1, we have:
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THEOREM 3: Let  be a multistate coherent system of order n; i.e. yr has n components. Then
A/(l:n) =] l,[f(X) = )((n:n)-

THEOREM 4: Let y be a multistate coherent system of order n. Then

Y(XVY) > ¢(X) Vv ¥(Y), 3)
and

YXAY) =¥ X) Ay (Y). 4

The equality in (3) and (4) hold for all X and Y if and only if the system’s architecture is parallel
and series, respectively.

Thus, for a multistate eoherent system, equation (3) reiterates the result that, structurally,
component-level redundancy is superior to system level redundancy, and vice versa in equa-
tion (4). Theorems 3 and 4 and Lemma 1 are also in El-Neweihi & Proschan (1984). They are
stated here for completeness.

Since X(1.s) = ¥ 5(X) and X,y = ¥ p(X), we have the result that the structure function of
any multistate coherent structure is bounded by the structure functions of multistate series and
parallel systems.

3.3 Multistate System Reliability under Precise Classification

Suppose that the component state vectors X, ..., X, are (conditionally) indcpendcnt and
identically distributed with P(X; = =L | Bj«1) = Pjsr,fori=1,...,nandj=0, ..., m, wherc

Pj+1 >0 and Z o Pl =1 That 1s, each X; has a multmomlal distribution over {L,] =

0,1,2,...,m} w1th parameter pjy, j=0,...,m.Let p=(p1...., Pms1). Clearly for each
s P(¢(X) 1) depends on p alone, smce the X s are assumed to be conditionally (given p)
independent. Thus, we let P(¢(X) = £ | p) = A (), where 4; is some function of f. Suppose

that the architecture of Y isa(n — & s 1)- out—of -n system. Thcn

b® =P (hrn00= L)
n n J+1 4 m+1 i 4 m+1 e
SO 5n) (3 —(zﬁb) > ) |
amk \2 b=1 b=j+2 b=1 =j+1

Example 1: Let m, n = 2. Therefore, we consider a two-component system with three possible
states: total failure (0), degradation (%), and perfect functioning (1), with associated probabilities
P, P2, and ps, respectively. Then, the probability that the parallel system i1s totally failed is
ho(P) = P(Yp(X) = 0| ) = p2. i.e. the paralle] system is totally failed when all its components

are totally failed. The probability that a series system totally fails is A¢(p) = P(¢¥s(X) =

P) = 2p1 P2 + 2173 + PZ; thus, a series system fails completely when at least one component
is totally failed.

When X, . .., X, are independent but not identically distributed, we may generalize the above

properties by introducing P(X; = L < | p; j01) = Pijes J = 0,..., m where foreach i, p;,,, >0
and Z 0 Py = 1. We define py = (p,-, s+« Piny,) to be the reliability vector associated with
the i- th eomponent and p = (p;, ..., Pa)- Given the conditional independence of the X;, a
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(n — k+ 1)-out-of-n system has

hy@) = P (a/fm.(X) -7 | p)

J+1 m+1 J m+1
SO ) (02 ~)-2( I ra)( I3 5)
a \ieJ, b=1 i€ b=j+2 a  \ie(J 1), b=1 ie(J=1Y, b=j+1
where J,, is the subset of (1, 2, ... , n) where at least k components are performing within level
;,L' and J] is the complement of J,. Similarly, (/ — 1), is the subset of (1, 2, .. ., n) where at least
k components function within level -%l and (J — 1)/, is the complement of (J — 1),.

Lemma 2 provides the pivotal decomposition for the reliability function, 4 ;(p).

LEMMA 2: The following identity holds for the pivotal decomposition of h;(p):

m
hj(p)=2hj [(%)p] S Bicwus JFOF J =08 wnngtitil = lgn o B (5)
a=0 i

where h;[(7)i, p]l = P(y(X) = ‘,,L. | Xi = 5. p)-

Proof. Follows from the Law of Total Probability.

4 Components with Imprecise State Classification

Binary state systems with precisc classification were overviewed in Section 1.2, and the
concept of vagueness introduced in Section 1.4. Sections 4 and 5 serve to combine these two
notions to develop a mechanism for the treatment of vague coherent systems, with Section 4
devoted to the case of components in vague states, and Section 5 to the case of coherent systems
in vague states.

The terms ‘coherence’ and ‘vagueness’ may seem contradictory; however, they do not pertain
to the same object. The first is associated with the truth values of logical connectives, whereas
the second pcrtains to the partitioning of a set into subsets. We start with some background on
vagueness and then discuss approaches for quantifying it.

4.1 Vagueness: General Background

Vagueness has been discussed by philosophers like Bertrand Russell, and by physicists like
Albert Einstein. To Russell (1923), ‘all language is more or less vague’ so that the Law of the
Excluded Middle ‘is true when precise symbols are employed but it is not true when symbols
are vague, as, in fact, all symbols are.” Black (1939) recognized the inability of binary logic
to satisfactorily represent propositions that are neither perfectly true nor false. He attempted to
rectify thisby analyzing the concept of vagueness in order to establish an ‘appropriate symbolism’
by which binary logic can be viewed as a special case. Unlike Lukasiewicz (1930), who was
also concerned about the Law of the Excluded Middle, Black did not introduce three-valued
propositions: Rather, he defined a vague proposition as one where the possible states of the
proposition are not clearly defined with respect to inclusion, and introduced the mechanism of
‘consistency profiles’ as a way of treating vagueness. Black’s consistency profile is a graphical
portrayal of the degree of membership of some proposition in a set of imprecisely defined
states, with 1 representing absolute membership in a state and 0 an absolute lack of membership.
Precise propositions are treated via step functions as consistency profiles, and vague propositions
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. o

(2) (b)

Figure 3. Example of Consistency Profiles: (a) for a precise set. (b) for a vague set. The consistency profile is 0 after x*.

i

®

Table 2

Membership table for precise set, Ay, versus fuzzy set, A.

x 1 2 3 4 5 6 7 - 8 9 10
o, (x) 0 0 0 0 0 0 1 1 1 1
oty () 0 0 0 0 0 0.2 0.5 0.9 1 1

by consistency profiles that tend gradually from one extreme to another; see Figure 3. The
scaling between 0 and 1 is arbitrary; other convenient limits could have been used. Further, the
consistency profile which is specified by an individual, or a group of individuals, need not be
unique.

4.2 Membership Functions and Probabilities of Fuzzy Sets

Black’s (1939) consistency profile precedes Zadeh’s (1965) membership function. For each x,
a normalized membership function 0 < p4(x) < 1 describes a belief of containment of x in a set
A. When p4(x) = 10r 0, 4 is a crisp (or precise) set; when 0 < p4(x) < 1, A is a fuzzy set. To
illustratc the concept of a fuzzy sct, consider

Example 2: Let Ay = {x € {1,2,...,10} | x > 7}. For any specified x, there is no ambiguity as
to whether x belongs to 4, or not. By definition, p 4,(x) = 1 when x =7, 8, 9, or 10; otherwise,
it is zcro (see Table 2). Thus 4, is a precise set, sincc i 4,(x) = 1 or 0. By contrast, consider the
set Ay = {x € {1,2,..., 10} | xislarge}. The term ‘large’ is vague; thus, we cannot precisely
ascertain the containment of any x in 4;. A possible membership function for Ay, p 4,(x), 1s
given in Table 2; this assignment is not unique.

For fuzzy sets, 4 and B in a basic set M, with membership functions u4(x) and pg(x)
respectively, Zadeh (1965) defined set operations that parallel those of precise sets. For any
x in a given basic set M,

1. 4up(x) = max[p4(x), na(x)],
2. pang(x) = min[p 4(x), pp(x)],
3. pa(x) =1 — pu(x),

4. AC B <& p4(x) < pp(x), and
5. A=B & pu(x) = pnp(x).

Thus, the union of fuzzy sets 4 and B is the fuzzy set 4 U B, whose membership function is max
[ 4(x), pp(x)]; similarly for the intersection and the complement. There is a parallicl between
operations with fuzzy sets and the conjunction and disjunction connectives of Lukasiewicz
(1930). In Section 5.1, we use these operations to define structure functions of vague binary
statc systcms. Thus, we claim that Lukasiewicz’s logic provides a unifying framework via which
both multistate as well as vague systems can be studied.
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4.2.1 Probabilities of fuzzy sets

In the context of this paper, statistical inference plays a key role. This role comcs into effect
when we endow a probability measure for a fuzzy set, say 4. There are two key ideas that drive
this development, namely that (1) vaguc sets are a consequence of one’s uncertainty about the
boundaries of sharp sets, and (2) the membership function p 4(x) is to be interprcted as data (or
information) whose role is to help induce a likelihood function, just like the role of an observation
in traditional statistical inference. The above ideas can be best exposited by envisioning the
scenario of expert testimonies and information integration that has gained current popularity in
statistical practice (cf. Reese et al. 2004).

Accordingly, we consider the actions of D, an assessor of probabilities (or a decision maker),
who quantifies his (her) uncertainty about any outcome of X, say x, being classified in 4 via a prior
probability 7 p(x € 4). The thesis here is that all uncertainties, including those of classification,
be quantified via probability. In order to sharpen the prior probability, D consults an expert,
say Z, and elicits from Z a membership function u 4(x). This u 4(x) can be seen as additional
information about the nature of x’s membership in 4, and de facto serves a role analogous to that
of observed data in statistical inference about outcomes. In essence, observed data are evidence
about outcomes whereas membership functions are evidence about classification. In principle,
D may consult several expcrts and elicit from each membership functions as a way to further
sharpen the analysis.

With p4(x) at hand, D constructs his (her) likelihood function that x € 4; we denote this
likelihood by L{x € 4; u4(x)]. The construction of this likelihood follows standard statistical
proccdures for formally incorporating expert testimonies, and should include things such as
D’s view of the cxpertise of Z and, in the case of several experts, correlations between them
(cf. Lindley, 1991; Clarotti & Lindley, 1988). Since L[x € 4; p4(x)] is D’s likclihood that Z
declares u 4(x) when x € 4, the spccification of this likelihood is a subjective exercise on the part
of D. Conventionally, in statistical inference, likelihoods for unknown parameters are prescribed
via probability models (for outcomes) using the observed data as fixed quantities. By contrast,
what we have done here is prescribed a likelihood about classification using the membership as
a fixed entity, but without thc benefit of a probability model. In so doing, we have interpreted
the likelihood in a broader sense, namely as a weighting function (Basu, 1975). In addition to
L[x € A; u4(x)], D also needs to specify L{x ¢ A4; p 4(x)], which is D’s likelihood that x ¢ 4
when Z declares a p 4(x), and Pp(x) which is D’s subjective probability that an outcome x will
occur. Thus D needs to specify two probability measures i p(x) and 77 p(x € A), one for outcomes
and one for classification, and two likelihoods, L{x € 4; pt4(x)] and L[x ¢ A4; p4(x)].

With the above in place, D uses standard statistical methodology involving Baycs’ Law, Bayes’
Factors, and prior to posterior odds (cf. Kass, 1993) to obtain a probability measure for a fuzzy
set A (cf. Singpurwalla & Booker, 2004) as

Llx ¢ 4;,p4(x)] 7p(x ¢ 4)
L e Aspq(x) 7plx € 4)

Equation (6) above is the essence of the material of this section; it is to play a key role in
what is to follow. In obtaining the above, we have leaned heavily on the statistical notion of
likelihood and the likelihood ratio. Equation (6) simplifies if D chooses to use Z’s declared
1 4(x) as the sole basis for constructing his (her) likelihood, so that L[x € 4; p4(x)] = p4(x),
and L[x ¢ A;pn4(x)] =1 — p4(x). In this case,

PD[XeA;M(x)]=Z[1—(1 =) ””("“)] P ()

=
Pp[X € 4;p4(x)] = Z [1 =k ] Pp(x). (6)

x

- T pa(x)) wox € A)
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4.2.2 The role of precise and fuzzy data in vague systems

In equations (6) and (7), Pp(x) encapsulates D’s prior uncertainty about an outcome x. Were
D to have at his (her) disposal x = (x4, ..., x,), data on X, then Pp(x) would get replaced by a
posterior probability, say Pp(x; x). The calculation of this posterior would be a routine exercise
were D to invoke a probability model for outcomes, and were the actual observations x, . .. , x,
sharp (i.e. precisely stated). What must D do to update Pp(x) if the data x is itself fuzzy?

To addrcess this question, we first need to clarify as to what one means by fuzzy data, a term
that has appeared in several book and article titles; see, for example Bertoluzza ef al. (2002), and
Viertl (2006). If by fuzzy data, we mean imprecision of observation (i.e. observation error), then
the treatment of such data can be routinely handled via standard statistical technology, provided
that an crror distribution can be specified. The literature on ‘calibration’ adequately deals with
this issue; see, for example, Huang (2002). If by fuzzy data, we mean a statement such as ‘thc
outcome does or does not belong to the fuzzy set 4’, then the incorporation of such information
for updating Pp(x) is no more a standard matter. In other words, when the actual value taken by
X, say x;, is not declared, but what is declared is whether thc actual value belongs or not to A,
an assessment of Pp(x; observed value belongs (does not belong) to A) poses a challenge. This
can be addressed if a likelihood for X = x; with the knowledge that the ‘observed value belongs
(does not belong) to A’ can be specified by D. The spccification of such a likelihood will entail
several issues such as who provides D the said knowledge, Z or someone other than Z. If it is
Z, then p 4(x) provides some guidance to D about specifying the likelihood. If it is someone
other than Z, then D needs to contemplate the knowledge provider’s actions. These and other
issues remain to be addressed, including the matter of calibrating Z and updating membership
functions.

4.3 Components in Vague Binary States

The notion that units can exist in states that are vaguely defined was introduced in
Section 1.4. Spccifically, let X denote the state of a component at some time 7 > 0, and let
X take values in S = {x; 0 < x < 1}, with one representing the perfectly functioning state.
Consider G C S, where G = {x;x is a ‘desirable’ state}. Suppose that interest centres around
X € G. Suppose also that we are unable to specify an x* such that X > x* implies that X € G
and, otherwise, X ¢ G. Thus, the boundary of G is not sharp; i.e. G is a fuzzy set. " Let pg(x)
be the membership function of G. Figure 4 illustrates plausible forms for p1g(x). Interest may
centrc around G for several reasons, a relevant one being a desire to use ‘natural language’ for
communication with others on matters such as repair and replacement. Another possibility is
that it may not be possible to observe the actual value of x, but onc may bc able to make a general
statemcnt about the state of the component.

The complement of G, say G, is that fuzzy set whose membcrship function is 1 — pg(x). It
is important to note that, if another subset B C S was defined as B = {x; x is an ‘undesirable’
state}, then G¢ may or may not be B unless z25(x), the membership function of B, was such that
up(x) = 1 — pg(x). In principle, one is free to choose a z(x) that need not bear a relationship
to pg(x). For example, in Figure 4(a), pp(x) is symmetric to pug(x), whereas in Figure 4(b),
wg(x) and pg(x) are not symmetric. There is precedent in the statistical sciences for choosing
asymmetric likelihood functions. For example, one need not specify likelihood functions that
are symmetrical for competing hypotheses.

Example 3: An assessor D wants to assess the probability that a component will be in a
‘desirable’ state G at some future time t. That is, D wishes to specify Pp[X € G; ng(x)], where
amembership function of the form 125(x) = x*, 0 < x < 1 has been elicited by D from an expert,
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Figure 5. Component state at time t, Pp(x).
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Figure 6. Two possible prior forms of classifying X = x, Py(x € G) and Py(x € G), supplied by the assessor D.

Z. Suppose that Pp(x), D’s personal probability that the state of the component at time = will be x
is of the form given in Figure 5; it is a Beta(6,2) density. Furthermore, suppose that D’s belief that
nature will classify any x in G, namely Pp(x € G),isofthe general formillustrated in Figure 6 with
the label, Pi(X € G). Then, it can be seen—via equation (7)—that Pp[X € G; pg(x)] = 0.6605.
As a consequence, Pp[X ¢ G; ug(x)] = 1 — 0.6605 = 0.3395. By contrast, suppose now that,
if D were to specify Pp(x € G) via the label P,(x € G) of Figurc 6 and keep everything else the
same; then Pp[X € G; pug(x)] would increase to 0.7486. Thus, even a small change in the form
of Pp(x € G) produces a noticeable ehange in D’s final answer.

4.4 Reliability of Components in Vague Binary States

We say that a component’s state is ‘vague and binary’ if interest centres around a single vague
set of the kind G or BB in our illustrations. As was mentioned before, we should bear in mind that,
in general, G¢ need not be B and vice versa, unless of course G and B are precise sets. For G =
{x; x is a “desirable’ state} and pug(x) specified, it is reasonable to define the reliability of the
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component as Pp[ X € G; ng(x)]. Equation (6) can now be used to evaluate this probability. With
B = {x; x is an ‘undesirable’ state}, and p(x) specified, we may define the unreliability of the
component as Pp[X € B; up(x)]. We could have also defined the unreliability of the component
as Pp[X € G€; ug(x)], where GC is that fuzzy set whose membership function equals 1 — pg(x).
With either choice for the definition of unreliability, we see that, when a component’s state is
vague and binary, its unreliability is not necessarily the complement of its reliability! This result
is in contrast to that of binary eoherent systems.

Example 4: The case of components that can exist in precise binary states can be en-
compassed within the above framework; pg(x)=1 for x > x* and nip(x € ) =1 if x >
x*, and zero otherwise. Furthermore, B = G¢, thus Pp[X € G; ug(x)] = | — Fp(x*) and
Ppl[X € B; ug(x)] = Pp[X ¢ G; ug(x)] = Fp(x*), where Fp(x*) is thc cumulative distribution
function (cdf) associated with pp(x) evaluated at x*.

5 Binafy State Systems with Imprecise Classification

The purpose of this section is to extend the development of Section 4.3 on binary state
components with impreeise classification to the case of binary state, n-component systems with
imprecise classification. By ‘binary state systems with imprecise classification’, we mean those
systcms whosc component states are vague and binary, and whose structure functions satisfy
the logical connectives of Lukasiewicz; see Section 2. OQur motivation for choosing this as a
definition of structure functions is that the structure functions of binary state coherent systems
with precise classification are exactly the membership functions of certain precise sets. The
case of multistate systems with imprecise classification, though not discussed here, follows by
analogy.

5.1 Structure Functions as Membership Functions of Precise Sets

Let X; be the state of component { taking a particular value x;, i = 1, ..., n. Suppose that
each X; can take values in S = {x; 0 < x < 1}. Let G; = {x;; x; is a ‘desirable’ state}, G; C S.
Let ug (x;) denote the membership function of G;,i =1, ..., n. For now, suppose that G; 1s
precise for all /. That is, for each i, there exists an x] such that ug (x;) = 1(0) when x; > x7
(x; < x}). For ease of notation, this section focuses solely on the subspace G;; therefore, we use
wi(x;) to denote the representation of the above membership funections, with the understanding
that the membership function assigned is dependent on the fuzzy classification, G;, which itself
depends on component i. For the remainder of this paper, we let L[X ¢ G;; u:(x)] = 1 — pi(x)
and L[X ¢ Gpx; ()] = | — pym(x), where ¢(X) is as defined in Section 1.2.

Let X = (Xj, ..., X,,) and supposc that thc #n components are in series. Thus the system’s
structure function is 1 if and only if x; > x7 foralli =1, ..., n. However, x; > x7 implies that
wi(x;) = 1 for each i. Thus we may write

¢s(X) = [ ] wi(X0) = minfps (X)) = e (X), ®)
i=1

where 11.,)(X) is the membership function of the interscetion of the n precise sets G;, i =
1, ..., n. Thus, the structure function of a series system with precise classification can also be
interpreted as the membership function of the intersection of n precise sets. Similarly, if the
n components were to be connected in parallel redundancy, then the structure function of the
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system would be
n
¢p(X) = | | i(Xs) = max{pui(X)] = puny(X), 9
jax]
whieh is the membership function of the union of G;,i = 1, ..., n. Finally, for a k-out-of-n
system, we could write

I; ~of 3or, (X)) = &
0, otherwise.

Pk (X) = { (10)
Whereas the relationships of equations (8) and (9) have an interpretation within the ealculus of
fuzzy sets, equation (10) does not. Sums of membership functions are not a part of the calculus
of fuzzy sets. We therefore seek an alternate way of expressing ¢ ¢ (X). We do this as follows.

Suppose that the p,;(X;) terms are relabeled so that y.,)(X) is the minimum and p(,.,)(X) 1s
the maximum; i.e. LX) < LEX) < - < PE-k+1)X) = -+ = pEay(X). Since each
1;(X;) is either zero or one, the above ordering will result in equalities for many of the above
terms. Once the above is done, we see that ¢ x (X) = fi(s—k+1:1)(X). Thus, in general, the structure
function of a k-out-of-n system is the membership function of the precise set intersecting the k&
smallest G; sets.

5.2 Structure Functions of Vague Binary State Systems

Motivated by the material of the previous section, we define the structure function of series,
parallel, and k-out-of-n systems whose component states are vague and binary as

¢s(X) = Hliin['ll»i(Xi)] = pan)(X),
¢p(X) = m‘ax[ux(Xx)] = H’(n:n)(x)v and

¢K(X) = /‘L(n—k+l:n)(x)-
These structure functions are identical to those for the case of binary precise sets, except that
now, i;(X;) is a membership function of an associated vague setG;,i = 1,...,n.
Finally, if mp(x; € G;) denotes D’s probability that a particular x; gets elassified in G;, then by
analogy with equation (7), we have

. o e
Pol; € G o) = [ [1 - (1 - #,(lx,)) o ig;] aPoGx), (1)

where Pp(x;) is D’s probability that X; < x;.

Our development thus far has assumed that the membership functions u;(x;),i=1, ..., n,
are all distinct. Simplification occurs if g;(x;} = p(x) fori = 1, ..., n. We limit our attention
to the case of series and parallel systems because more complicated systems, such as networks
can be represented as a combination of series-parallel systems.

5.3 Reliability of Vague Binary State Systems

If the state of each component in a system is a desirable state, will the system itself be in
a desirable state? The answer to this question need not be in the affirmative. This is because
requirements on the system could be more stringent than those on each component of the system.
This is unlike the case of binary state systems with precise classification wherein a series system
is judged to be reliable if all its components are reliable. Thus, there are two possible ways in
whieh the reliability of a vague coherent system ean be defined. The first is to assume that a
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series system is reliable if all its components are in a desirable state. The second is to require that:
for a system to be judged reliable, its state—say x—be a desirable state. Specifically, we require
that x € Gy(x), where Gyxy = {x; x isa ‘desirable’ system state } and Gyxy C S. Associated with
Gex) 1s its membership function, pg,,(x). Similarly, in the case of a parallel system, we have
two possibilities for defining reliability—the first one being that the system is reliable if at least
one of its components is in a desirable state, and the second being the requirement that its statc
x € Gyx)- We simplify notation by letting f14mx)(x) = Ug,q,(x) and focusing the discussion on
the subspace Gy,.

For assessing reliability, let us consider the first case for series and parallel systems. Assuming
the X;’s independent, the reliability of a series system would be [];_,[Pp[X: € Gi; pi(x:)]) where
Ppl[X; € G;; wi(x;)] is given by equation (11). The reliability of a parallel redundant system
is PD(U:.'=l {Xi € G:}; ni(xi), i =1,...,n); it can be evaluated by the Inclusion-Exclusion
formula of probability (Feller, 1968). The computations simplify when the X;’s are assumed
identically distributed. The case of k-out-of-n systems follows along similar lines.

With regard to the above, a question arises as to what we mean by independence of the X;’s,
when the X;s take values in a vague set. In the context of equation (11), X; and X}, i # j, will be
judged independent if

Pp(X; <x;, X; < x;) = Pp(X; < x;)- Pp(X; < x;), andif
Pp(x; € Gi,x; € G;) = Pp(x; € G;) - Pp(x; € G;) and
Pp(xi ¢ Gi,x; € Gj) = Pp(xi ¢ Gi)- Pp(x; ¢ Gj).
The more interesting case is the second one, wherein a system is reliable if the state in which

it resides is a desirable one. We start with the case of a series system with structure function
¢s(X). Its reliability is Pp(¢s(X) € Ggsxys Hasixy(x)] which, from cquation (11), is of the form

1 —1
Pp(ps(X) € Gpsxys Hasx)(x)] =/; [1 = (1 = (x)(x)) - Zzg i g:sgi] dPp(x),
(12)

where mp(x € Gg5(x)) is D’s probability that x is classified in G4 x) were ¢5(X) = x, and Pp(x)
is D’s probability that ¢ s(X) < x.
Since ¢5(X) = min; ©;(X;) = pamy(X), we obtain Pp(x) as follows:
Pp(¢s(X) = x) = Pp(py(X) > x)
=Pp(ui(Xj)=x,i=1,...,n)
= Pp(X; =z p7lx)i=1,...,n)

n

(13)

PplX; = ;L,."(x)], if X;’s are assumed independent,
i=] "

where p; 1(-) denotes the inverse of u;(-). Subsequently, dPp(x) can be obtained. If the X;’s
cannot be judged independent with respect to D’s distribution for the X;’s, wc need to specify
a joint distribution for these, such as Marshall & Olkin’s (1967) multivariate exponential, or
any of its variants. In the case of parallel systems, the development will proceed along similar
lines, save that now Pp(x) will be obtained via [[’_, Pp[X; < u; ! (x)]. Finally, the case of
(n — k + 1)-out-of-n would follow by considering the distribution of the £-th order membership
function, ,u(k;,,)(x).

Example 5: Consider a two-component series system where the component performances are
independent and identically distributed. D wishes to assess Pp[os(X) € Gypux); Hoso0(X)]. The
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first option is to compute the product of the component probabilities. Let u1g, (x) = x2, and Pp(x)
and Pp(x € G;) be as shown in Figures 5 and 6, respectively, for i = 1, 2. Then, Pp[¢s(X) €
G505 eso(x)] = 0.6232. The second option is to compute the system reliability directly,
through the use of Z’s membership function for the entire system. Supposing that the expert
holds a stronger standard for the system to be in a desirable state than that for the compo-
nents, we let 1y, (x) = x'°. Meanwhile, D considers Pp(x) and Pp(x € G;) as specified in
Figures 5 and 6 for ¢5(X), implying that Pp[¢s(X) € Gy.x); Hesx)(x)] = 0.4321. Thus, by
holding the system to a more stringent standard, D’s assessment of the system reliability is lower
when considered directly, as opposed to that when using a morc relaxed membership function
to represent belief at the component level.

6 Maintenance Management in a Vague Environment

Examples 3-5 illustrate how D is able to assess the probability that the state of a unit will
be in a ‘desirable’ state, or its complement. Why would D be interested in such a probability
istead of the probability that the state of the unit will be x, 0 < x < 1? Reasons were given in
Section 4.3, the one pertaining to communication using ‘natural language’ being the most
rclevant. This point is best underscored via the scenario of maintecnance wherein one must decide
whether to repair, replace, or simply continue to monitor the unit. In practice, judgments about
maintenance are not based on assessments of uncertainty about x; they are based on conjectures
about whether or not the unit will be in a ‘desirable’ state.

Consider the following: a unit is required to perform service for some time period. The unit
can exist in one of three states: G (for good), BB (for bad), and A (for acceptable). When the unit is
in state G, the utility to D provided by the unit is L(G); analogously, we define U/(A) and U(B). It
is reasonable to suppose that L/(A) < U(G) and, in principle, —U(B) could be greater than U(G),
1.e. the cost for being in state BB could dominate the reward for being in state G. With the above
in place, D’s problem is to make a dccision whether to replace the unit, denoted R, or to repair
the unit, denoted M, or do nothing, denoted /. There is a cost associated with each of these
three actions, and thesc arc denoted —U(R), —U(M), and —U(N), respectively. Presumably,
—UWN) < =UM) < —U(R). Which of the above three actions should D take?

The problem is solved by using maximization of expected utility (MEU) [cf. Lindley (1991),
p. 58]. The decision tree of Figurc 7 facilitatcs an implementation of this recipe; the rectangle
represents D’s decision node and the three circles denoted R;, Ry, and R; represent the three
nodes corresponding to the three actions R, M and NV, respectively. Each (random) node results
in one of three outcomes, x = G, A or B, and these are portrayed in Figure 7 only for the node
R3. At the terminus of the tree are the utilities. For example, U(N, G) denotes the utility to D,
when D’s decision is to monitor the unit and the outcome is G.

The MEU principle requires that, at each random nodc, D compute an expected utility of
an action that leads to that node. For this, D needs to assess the probabilities that at z, the
state of the unit will be in G, A, and B, respectively. These probabilities would depend on three
ingredients: membership functions of the kind p,(x), n.4(x), and png(x); D’ prior probability
that an x is classified (by nature) in G, A, and B (i.e. Pp(x € ), * =G, A, B), and Pp(x), D’s
subjective probability that the state of the unit will be x. Since }~,_. 4.8 Pp(x € x) =1, Dneed
only specify any two probabilities. Once thcse are at hand, D invokes equation (7) to obtain
the required probabilities. All of the above is straightforward except that Pp(x) depends on the
action that D takes. Both repair and rcplacement actions tend to right-skew the form of Pp(x)
toward one. Thus, with respect to the illustration of Figure 5, a repair action will tend to shift the
probability mass closer to one, and moreso with replacement. To summarize, the impact of D’s .

International Statistical Review (2008), 76, 2, 247-267
© 2008 The Authors. Journal compilation © 2008 International Statistical Institute



264 K.F. SELLERS & N.D. SINGPURWALLA
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Figure 7. D decision tree for maintenance actions.

actions on D’s probabilities of the state of the unit are reflected only in Pp(x). The membership
functions and the classification probabilities are unaffected. To denote such a dependence, we
shall replace the P;(x) of equation (7) by Pp(x;e), and Pp[X € *; tix(x)] by Pp(X € ; tux(x), o)
fore =R, Mand N;x=G, 4, B.

Whereas the development in Sections 4 and 5 pertained to the binary case involving two
vague sets B and G, our examplc here involves three vague sets A, B, and G, and their respective
membership functions, 1,(x), e = A, 5 and G. Of these, only p 4(x) warrants comment since
the general nature of the other two has been discussed before; see Figures 4(a) and (b). It is
reasonable to suppose that the general form of p1 4(x) is either bell-shaped or an inverted U.

Finally, a question arises as to whether u 4(x), us(x), and pug(x) can takc any arbitrary form
independent of each other. The answer to this question is in the negative because the membership
functions go to determine the quantities Pp[X € A; ua(x)], PplX € B; us(x)] and Pp[X €
G; ug(x)], and these must sum to one. Thus, D needs to ensure coherence of the membership
functions just like how D needs to ensure a coherence of the classification and state probabilities.
Since D elicits membership functions from Z, it is incumbent on D to ensure that membership
functions do not lead to results that violate the countable additivity axiom of probability. This
important point has not been addressed in Singpurwalla & Booker (2004).

The utilities at the terminus of a tree, U(N, G), U(N, A) and U(N, B) are straightforward to
write out. Thus, for example, U(N, G) = U(N) 4 U(G), which is the sum of the disutility due to
monitoring and the utility of the unit being in state G. Similarly, Z{(N, B) = U(N) + U(B), and
UWN, A) = UN) + U(A). With this in place, we compute the expected utility at each node.
Thus, for example, U(N), the expected utility atnode Rs istU(N) = 3, 4 pU(N, %) - Pp(X €
*; (), N), where Pp(X € x; u.(x), N) is the right-hand side of equation (7) with Pp(x)
replaced by Pp(x;N); similarly, the other terms of U(N). The expected utilities at nodes R,
and Rj are analogously computed as U/(R) and U(M), respectively, mutatis mutandis. Once the
above are done, D’s maintenance decision is to choose that action for which the expected utility is
a maximum. Thus, for example, if U(N) > U(R) > U(M), then D’s decision would be simply
to do nothing. .

How does the above material differ from that which is currently available in the literature
on maintenance planning? The current literature would require each node to be binary and,
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to compute the expected utility at each node, all we need is the probability that x > x*. This
probability can be had once D specifies Pp(x; o), e = R, N and M. By contrast, we allow an
x to exist in three vaguely defined sets, and allow x to simultaneously exist in more than one of
these. The advantage is flexibility and a facility to entertain an analysis that facilitates natural
language communication. Further, in the existing literature, uncertainties are assessed about
times to failure via probabilistic failure models, and failure is viewed as a sharply defined event.
Consequently, the analysis is forced into a binary framework. By contrast, our uncertainties are
focused on x which can encapsulate degradation of a unit.

7 Summary and Conclusions

The term ‘complex stochastic systems’ is well entrenched into the vocabulary of statisticians,
though it generally pertains to a use of the Markov Chain Monte Carlo method. This paper takes
a broader view of this term by embedding within it the theory of vague coherent structures.
This thcory, which is gencrally associated with work in applied probability and reliability is
germane to statisticians, especially those whose focus is on biostatistics, genetics, graphical
models, and neural nets. With that in mind, we have devoted Section 1 to an overview of the
key notions and ideas of binary state systems whose two states can be precisely delineated.
The mathematics which drives the development of results for such systems is binary logic. In
Section 1, we also set the stage for the material of Sections 4 and 5 by introducing the idea
- of imprecise or vague sets. The need for such sets has been acknowledged by physicists,
philosophers, and logicians. More rccently, their need has also becn recognized by thosc involved
in decision making and natural language processing. Section 2 is devoted to multivalued
logic in the context of multivalued propositions. The focus here is on the connectives of
conjunction and disjunction; these connectives can be used to define the structure function
of multistate systems, a topic treated in Section 3. In Section 3, it is assumed that the
classification of states is precise. This topic has been covered before via the literature on
multistate reliability; however, what is new here is the departure from binary logic to multivalued
logic.

Scctions 4 and 5 impart to this paper a feature that is novel. Specifically, they pertain to the
development of reliability for components and systems whose state space is vague. In actuality,
vague state spaces are more realistic than the usual zero-one states, which are an idealization. In
Sections 4 and 5, we also show that the usual notions of rcliability do not always hold when the
state space is vague. For example, the unreliability of a unit is not one minus its reliability, and
that there is more than one way to define system reliability.

There is another aspect of this paper that warrants comment. In the existing theory of coherent
structures with precise classification, statistical principles have no role to play. All thatisneeded is
the calculus of probability. By contrast, when dealing with vague systems, membership functions
and consistency profiles create a role for the likelihood function and, in so doing, mandate a
considcration of the principles of Baycsian statistical inference.

The illustrative examples of Sections 4 and 5, and the maintenance management architecture
of Section 6 should give the reader an inkling of the practical import of the material here. For
example, in maintenance and replacement actions pertaining to dccision making uncertainty, the
usual strategy is to assume that the state space is binary—functioning and failed. In actuality,
functioning can occur at different levels whose boundaries cannot be sharply delineated. Thus,
it makes more sense to study maintenance and replacement when the state space is vague for, in
actuality, this is how such decisions are made.
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Résumé

L’état de I’art dans la théorie de structure cohérente est guidé par deux assertions qui sont tous deux limitants : (1)
toutes les unités d’un systéme peuvent exister dans un de deux états, défaillant ou fonctionnant; et (2) a n’importe quel
moment, chaque unité peut seulement exister dans un des susdits états. En réalité, les unités peuvent exister dans plus de
deux états et c’est possible qu’une unité puisse simultanément exister dans plus d’un état. Cette derniére caractéristique
est une conséquence de I’opinion qu’il ne soit peut-&tre pas possible de définir avec précision les sous-ensembles d’un
ensemble d’états; on appelle de tels sous-ensembles vagues. La premiére restriction a été adressée par les méthodes
appelées “systémes multi-états™; pourtant, ces méthodes n’ont pas pris avantage des mathématiques sur les propositions
multivalues en logique. Ici, nous invoquons ses tables de vérité pour définir la fonction des systémes multi-états et
exploiter ensuite nos résultats dans le contexte d'ambiguité. Une contribution clé de ce papier est d’argumenter que la
logique de plusieurs values est une plateforme commune pour étudier tant les systémes multi-états que les systémes
vagues, mais pour faire ceci, il est nécessaire de se baser sur plusieurs principes d’inférence statistique.
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Abstract

Assessing conditionals based on any specified probability model is straightforward and unique when the conditioning
event is in the subjunctive mood; that is, supposing that the conditioning event were to occur. The matter becomes
problematic, however, when the conditioning event actually does occur as observed data, and thus becomes a reality. We
illustrate this point by considering a commonly occurring scenario in the actuarial sciences, engineering reliability, survival
analysis, and in general, any type of an activity that involves filtering. We argue that there could be more than one way to
bet on residual life. Our message is that it is the likelihood—not Bayes’ Law—which is the tail that wags the dog!

“This paper should appeal to both probabilists and statisticians who are interested in foundational issues. It has been
written to honour Richard Johnson whose Editorship of Statistics and Probability Leiters has provided a platform for
dialogue between probabilists, statisticians, and those who strive to be both.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Actuarial science; Conditionalization principle; Double slit experiment; Filtering; Forecasting; Likelihood; Reliability; Survival
analysis

1. Introduction

In the proecess of using marker data to assess the lifetime of an item experiencing failure due to ageing, we
were confronted by a dilemma that sneaked upon us as a matter of course (see Singpurwalla, 2006a). It turns
out that the scenario leading to the dilemma is quite common and can arise when addressing practical issues of
conditioning in the actuarial, the enginecring, and the biomedical sciences. Stripped to its essentials, the
scenario goes as follows.

Suppose that an item’s lifetime X is judged to have a distribution function G(x) = P(X <x), and a survival
function G(x) = G(x) = P(X > x). We suppose that lifetime can be continuously monitored so that x=>0.
Were this item supposed to survive until x, its residual (or remaining) lifetime will be X — x. We are required to
make statements of uncertainty about (X — x), so that actuarial, engineering, or medical decisions about the
item can be made. That is, we are required to specify P(X — x>u|X >x), for all u>0. Our interpretation of
probability is de Finnetian (see de Finetti, 1937), in the sense that probability reflects one’s disposition to a
two-sided bet. Thus, probability assessments can be seen as a device for hedging our bets on the item’s
survival, or some other unknown quantity of interest, such as parameters in probability models.

*Tel.: +12029947515; fax: + 1202994 7508.
E-mail address: nozer@gwu.edu.

0167-7152/% - sce front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/}.5pl.2007.03.021
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A solution to the problem posed is elementary and unique, given a distribution function G. Specifically, for
any u>0 :
P(X>x+u)  G(x+u)

PX>x) — G(x)

PX —x>ulX>x)=P(X>x+ulX >x)= (1.1)

Suppose now, that instead of the subjunctive, “were the item to survive until x”*, we are told that the item
actually did survive to x. That is, the event (X' > x) is no more an uncertain event; (X >x) has now become
observed data. What then would our assessment of the uncertainty about the residual life (X — x) be? In other
words, how would we bet on the event (X — x>u), for #>0? Would it continue to be G(x -+ u)/G(x), or could
it be something else? If the latter, would the number to bet be unique? For a discussion of these and related
questions, one may visit Freedman and Purves (1969). A more recent discourse on the different kinds of
conditional beliefs is in Joyce (1999, Chapter 6).

Intuitively, it seems that there ought to be some distinction between looking at (X >x) as a possibility,
versus looking at it as a fact that is revealed as data. Thus, G(x + ) /G(x) need not be the correct answer. Yet
many individuals when faced with this problem would simply mimic the steps leading to Eq. (1.1) and continue
to declare G(x + u)/G(x) as their answer. In doing so they do not appear to be making a distinction betwcen
(X >x) as a supposition versus a reality. Alternatively put, they may be failing to recognize the connotation
that in a conditional probability statement, the word “given” does not indicate a fact; rather it indicates a
supposition that the conditioning event is true. Thus, are thosc who declare G(x + 1)/G(x) as their answer—
irrespectiye of the charactcr of the conditioning event—in error, or is there a rationale for their answer?

We claim that the rationale cannot completely be within the calculus of probability, because the notion of
probability—at least from a subjectivistic point of view—is germane only when the disposition of all events in
question is unknown. Thus, for example, it may not make sense to say.that the probability that a coin with
heads on both faces when flipped ‘will land heads, is one. This is because the disposition of the outcome is
known before the flip. Consequently, a two-sided bet on the outcome heads has to be $1, which will be
exchanged for a $1 when the coin lands heads, which it will. The two-sided bet of $1 is thus meaninglcss. The
rationale therefore must come from concepts in statistics wherein the notion of a likclihood plays a signal role.
By all accounts the notion of a likelihood appears to be alicn to probability theory.

In what follows we point out that there are both philosophical and technical arguments which support
G(x + u)/G(x) as an answer, but that this answer is one among other possible answers. This is the main point
of this article. Arguments about conditioning are common among philosophers of science. That such
arguments could also be relevant to reliability, survival analysis, filtering, and forecasting seems to not have
been recognized.

2. Answer(s) to the question
2.1. Reassessment and the principle of conditionalization

Somc individuals when faced with the matter of assessing P(X — x>u) with (X > x) as observed data, may
chosc to rc-assess all probabilities treating the factual event (X > x) as a part of background history; that is,
they would start from ground zero, even if the observed (X > x) is not a surprise. Diaconis and Zabell (1982)
label a process like this, complete reassessment; however, the driving premise considered by the above authors
is different from the one we are discussing here, in the sense that the observed event is considered to be a
surprise. In a re-assessment one essentially starts all over again from scratch and possibly cven rejects G as the
underlying probability model. The answer that one obtains may thercfore not necessarily be G(x + u)/G(x).
Reassessment is a perfectly legitimate step; its main danger is thc risk of incoherence (i.e. a lack of
consistency). We therefore do not pursuc here this line of reasoning and do not advocate reassessment as a
strategy. '

To ensure coherencc one may proceed formally by invoking Bayes’ Law as an inferential mechanism, using
(X >x) as data. These are two directions from which this can be approached, one general, the other specific.
These we describe in Sections 2.2 and 2.3, respectively, wherein we point out that there need not be a unique
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answer to the question posed, and that under a certain assumption, G(x + #)/G(x) will indeed be one of
several possible answers.

But there is another, more philosophical, argument that supports G(x + u)/G(x) as a correct answer. This
argument, known as the Principle of conditionalization (cf. Howson and Urbach, 1989, p. 68), proceeds as
follows:

Prior to observing (X > x) as factual data, we had declared that G(x + 1)/ G(x) would represent our bet (or
personal probability) on the event (X — x>u), for some u>0, were the event (X >Xx) turns out to be a fact.
Now that (X > x) has revealed itself as being actually true, we shall act as we had declared, and thus G(x +
u)/G(x) would continue to be our bet. As suggested by a reviewer, another way to articulate the principle of
conditionalization is, to assert that “if I say I am going to do something, I will do 1t™.

Those who subscribe to a complete reassessment by starting all over from scratch, may reject the principle of
conditionalization on grounds that the actual occurrence of thc cvent (X > x) has changed their psychological
disposition so dramatically from their disposition under the supposition that (X > x), that they can no more
subscribe to G as their model of uncertainty. They then seek an alternate to G, say H as a model for assessing
(X — x). This point was made by Ramsey (1931) (cf. Diaconis and Zabell, 1982) who stated that

[The degree of belief in p given ¢] is not the same as the degree to which [a subject] would belicve p, if he
believed ¢ for certain; for knowledge of ¢ might for psychological reasons profoundly alter his whole system
of beliefs.

Diaconis and Zabell (1982) also cite other, more modern, references that mention the above issue; these are
Hacking (1967), de Finetti (1972, p. 150; 1975, p. 203), Teller (1976}, and Freedman and Purves (1969).

Additionally, there also happens to be empirical evidence from quantum mechanics that rejects the
conditionalization principle vis-a-vis the “‘double slit experiment”. This experiment has now become a classic
thought experiment for its clarity in expressing the ccntral puzzles of quantun mechanics. In its original
version, performed by the English scientist Thomas Young sometime around 1805, the experiment consisted
of letting light diffract through two slits producing fringcs on a screen. The goal of the experiment was to
resolve the question as to whether light is composed of particles or waves. The current versions of the
experiment are performed with electrons instead of light (cf. Jonsson, 1974). Such experiments have shown
that the probability (as assessed via the relative frequency) of some event, say B, when an event 4 always
occurs is not equal to the conditional probability of B given 4 found from an experiment in which 4 occurs in
some replications and the complement of 4 occurs in other replications. This tantamounts to a negation of the
principle of conditionalization.

2.2. Using Bayes’ Law, directly

The clearest, and perhaps the most natural way to address the question posed is via a use of Bayes’ Law. But
to better articulate the workings of this law in the present context, we introduce the convention (see
Singpurwalla, 2006b) that for two events 4 and B, P(4|B) denotes the conditioning (or supposition) that B is
true, whereas P(A; B) denotes the fact that B is actually true. With the above convention in place, our problem
boils down to assessing P(X >x + u; X > x). The answer is given by Eq. (2.2). But thc arguments lcading to
this equation entail a transition from purely probabilistic considerations to thc statistical oncs, and thcse may
be helpful to re-iterate.

To assess P(X >x + u; X > x), onc way to start is by considering the proposition P(X > x 4 u[X > x), which
by Baycs’ Law leads us to the inverse relationship

PX>x+uX >x) xx P(X>x|X>x+ w)P(X >x+ u), 2.1

where “o¢’’ denotes proportional to. Eq. (2.1) is an honest-to-goodness probability statement.

However, since (X > x) has been observed as data, the middle term of Eq. (2.1) does not make sense as a
probability. Instead, it is the likelihood of the event X >x 4 u with X > x fixed. We denote this likelihood by
L(X>x+ u, X>x). Similarly, P(X >x 4 u|X >x) must now be writtcn as P(X >x + u; X >x). In writing
L(X >x + u; X >x) we interpret X > x + u, u>0, as a hypothesis and X > x as data. This interpretation is not
conventional in the sense that in statistical infercncc likclihoods are generally functions of unknown
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parameters, not unknown events. However, as stated by Edwards (1992, p. 12), the likelihood can be regarded
as a function of the hypotheses or of the parameters. A treatment of the question posed involving the use of
a parametric model which results in the likelihood being a function of the parameter will be discussed in
Section 2.3. :

With the above in place, Eq. (2.1) now becomcs

PX>x4+u X>x) x L(X>x+u; X >x)P(X >x + 1). 2.2)

The last term of the above expression, being an unknown quantity, is G(x + ).

According to Basu (1975, 1982), when Fisher (1912) rediscovered the Gaussian notion of likelihood, he
looked upon it as “a scale of comparative support lent by the data to various possible values of 8 [an unknown
parameter]”; also see Edwards (1992, p. 221). This interpretation of likelihood is (symmetrically) different
from the conventional interpretation in which the likelihood tells us which hypothesis better supports the data
(cf. Edwards, 1992, p. 9). The point of view that we adopt here is the former. Having done so, we are—in
principle—free to choose the functional form of the likelihood function as we see fit. Suppose then, that the
likelibood is taken to be a constant, say 1, over all values of x 4 u, with x fixed; see Fig. 1. Note that this choice
will also be in keeping with the conventional usc of thc likclihood. Then Eq. (2.2) would become

PX>x+u;X>x)x 1 - P(X>x+u),

which when normalized yields P(X >x + u)/P(X >x) = G(x + 1)/G(x) as an answer. Thus, implicit to the
answer given by those who subscribe to the principle of conditionalization (i.e. those who mimic the steps to
assess conditional probability) is the assumption of a constant likelihood!

Since one is free to choose the functional form of the likelihood, what if the likelihood was chosen by us, see
Fig. 1, to be some other function of u, say exp(—u), for u>0? Our assessment of P(X >x + u; X >x) would be
different; namely, it would be exp(—u)G(% 4 1)/ G(x). This means that it is thc form of thc likelihood that
dictates how we would bet on residual life. The standard answer G(x + u)/G(x) arises only under the special
case of a constant likelihood.

The constant likelihood encapsulates a user’s disposition of indifference with respect to the observed X > x.
A decreasing likelihood one of conservatism. The form of likelihood can therefore be given a behaviouristic
justification.

2.3. Using Bayes’ Law, conventionally

By a conventional use of the Bayes LLaw we mean the introduction of a parametric model into the analysis
followed by a prior to posterior transformation of our uncertainty about the parameters. When we do so, an
argument similar to the one of Section 2.2 can be made, and possibly with more transparency, because of the
concrete nature of the set-up. Suppose then, that P(X <x|f) = G(x|6), where #>0 is some unknown

? 1 1, Constant Likelihood
2
z
= Exponentially decaying
3 Likelihood
£
@
=
-
» Valuesof x + u
X u

Fig. 1. Likelihood of event (X > x + ) with (X >x) fixed.
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parameter. Using standard arguments involving the law of total probability, we may write
PX>x+ulX>x)= / P(X> X+ ulX > x, O)n(B1X > x)do,
6

where by Bayes’ Law
(01X = x) x P(X = x|0)n(6);

7(f) 1s our prior distribution of §>0.
With the event (X' > x) as data, the above relationship can be written as

PX>x+uX>x) = / PX>x+ ulb; X >x)n(0; X >x)do 2.3)
[/}

with
1(0; X 2 x) «x £(0; X 2 x)n(0), 2.4)

£(6; X > x) is the likelihood of 6, with X > x taken to be fixed, known, and also assumed to be credible.
Were we to subscribe to the principle of conditionalization, then #(8; X > x) will be prescribcd by our
chosen model G(x]0). If otherwise, we are free to choose any other meaningful form for #(8; X > x), and thus
our answers to P(X =x + u; X 2 x) could be different. The example below illustrates this point.
Let G(x]6) = | — exp(—0x), an exponential distribution with mean 1/, 6§ >0, and let our prior on 6 be a
gamma distribution with scale (shape) parameter 1 (k). This is a natural conjugate prior for 8, though any
other prior will also do. Then

o
PXzx+uX2x)= / P(X 2 x + u|0; X 2 x)n(0; X = x)dO
¢
o
= / e “Un(0; X >x)do,
0

and
7(0; X = x) o L(0; X 2 x)c™6"" /I'(k).

When £(0; X > x) = e~®*—which is what the principle of conditionality would mandate, and which is what
is conventionally done—then it can be verified that the posterior distribution of 8 is also a gamma with scale
[shape] (x + 1)[k]; i.e.

(0, X >x) = e DG (x 4 1) /T (k).

It now follows that

o k-1
PXzx+u;Xz2x)= / e'”oe”g(““)g—(x +1)<de
0 I'k)

x4+ 1 B
= (xu;uﬁ) : (25)

As an aside if the prior on 8 were taken to be an improper prior, w(@)=1, 6>0, then
P(X Zzx +u; X 2x) = (x/(x + u)). This assessment of residual life is similar, but not identical, to that of
Eq. (2.5) with &k = 1.

Suppose now that one were to not subscribce to the principle of conditionality and chose #(8; X = x) = ¢;i.c.
the likelihood is a constant ¢> 0. Then the posterior of 8 would equal its prior, and Eq. (2.5) would become
(u+1)"*. Hcre the cffect of x vanishes, because in choosing a flat likelihood one essentially says that
irrespective of what x is, an equal weight is given to all values of 6. Clearly, this choice for a likelihood is not
appealing. However, the following choice for £(8; X = x) appears to be a more sensible alternative.

Suppose that instead of choosing ¥(8; X > x) = exp(—0x)—a decreasing function of 6—one were to choose
ZL(6; X = x) = exp(—0fx), for some f>0. The likelihood would still be a decreasing function of 8, but the rate
of decrease would vary, depending on the value of f; see Fig. 2.
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exp(-68x), p>1

exp(-6%)
k3
144 SquEEpL)pt

e e i 7 Values of ©

Fig 2. Likelihood of § wilh X > x fixed.

For >0, Eq. (2.5) would become

: fx+1 k
P(X>X+U,X>X)— (m) 9 (26)
so that the introduction of a # in the likelihood tantamounts to assigning a weight f§ to the observed value of x.
This in some scenarios could be a desirable feature to have, say when the accuracy (i.e. the credibility) of the
observed x is suspect. The choice f>(<)1 would inflate (deflate) x, and this in turn would cause the likelihood
to decay faster (slower) than the conventional exp(—x). Since @ is the reciprocal of the mean time to failure,
accentuating large values of 0, as the choice f <1 would tend to do, boils down to accentuating small values of
the mean time to failure and thence small values of the residual life. Similarly with > 1. The choice § =1
encapsulates full faith in the observed x and also an adherence to the principle of conditionality. Egs. (2.5) and
(2.6) support our claim that the introduction of a parametric model increases the transparency of the point we
are trying to make.

2.3.1. Discussion: the advantage of parametric models

Parametric models are used because they facilitate a coherent updating of the assessed uncertainties via a
mechanistic application of Bayes’ formula. The example of Section 2.3.2 underscores this point. By contrast,
the direct approach of Section 2.2 requires of the user a fresh specification of the likelihood every time new
cvidence becomes available. This process, besides being cumbersome, has the danger of leading one to
incoherence should one not be thoughtful about one’s specifications. The disadvantage of parametric models
is that the chosen model may not be an accurate reflection of reality. All thc same the computational
advantage offered by parametric models outweighs the disadvantage of misspecification, and thus their
comInon use. '

2.3.2. Application to survival time data on winding life

To illustrate the workings of the material of this section we consider here some service life data on “‘field
windings” of generators given by Nelson (2000). The data below, abstracted from Nelson (2000, Table 1),
consists of months in service of failed and unfailed windings. The 16 ranked failures and survival times—with
the former tagged by an asterisk—in months are

31.7*,39.2%,57.5°,65.0,65.8",70.0%,75.0,75.0,87.5, 88.3,94.2, 101.7,105.8*,109.2, 110.0°, and 130.0.

Observe that seven out of the 16 field windings have experienced failures and of the nine that have not the
largest (smallest) service life is 130 (65) months. Suppose that for the purposes of planning for maintenance,
we are interested in the probability of any one of the surviving units not failing for an additional #> 0 months.
For the sake of discussion let us pick the unit with the largest accumulated life. That is, we need to assess
P(X >130 4 u;d), wherc d denotes the life history data given above.
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Fig. 3. Probability of the longest surviving unit surviving an additional v months.

Assuming that P(X > x|6) = exp(—68x), with a gamma prior for 8 with scalc (shape) parameter 1(k), it can be
verified that under an adherence to the principle of conditionality, the posterior distribution of 8 is also a
gamma with scale (3_7' x; + >_] #; + 1), and shape k + n, where 3" x; is the sum of the m survival times and

1 t; is the sum of the n failure times. When such is the case, we have—as an analogue to Eq. (2.5) -the result
that for any unfailed unit, that has experienced a scrvice life of x,

i Gl ﬂ> . @.7)
U xi+dgttut+l) '
Eq. (2.7) when invoked—for k = 5—in the context of the surviving unit with an accumulated service life of
130 months and the life history data given above yields, for #>0,

12
P(X>130+u;d)=( el )

P(X>=x+u;8) = (

Selode)e b 25
13069+ u 22
A plot of P(X >130 + u;d) versus u, for u>0, is shown as the bold faced curve of Fig. 3.
Were the principle of conditionality not adhered to and the likelihood function be modulated by the
constant #>0, then our analogue to Eq. (2.6) would be
BT xi+ 1)+ 1 )"*"
PXzZx+tuje) = | =55 : . 2.9
( &) (ﬁ(ZI X;+Zl )+ u+1 25
Eq. (2.9) when invoked in the context of the scenario leading up to Eq. (2.8) for f = % and 2 would result in the
dotted curves of Fig. 3. Our assessed survival probability depends on the form chosen for the likelihood. In
principle, likelihood plays a more crucial role than the prior, because whereas the prior gets updated with new
evidence, the likelihood stays put from the start.

3. Conclusion

The innocuously simple problem of assessing conditional probabilities can get riddled with issues, both
philosophical and technical, when the conditioning event becomcs a rcality. The clcanest way to approach it is
through Bayes’ Law. When this is done it can be seen that the standard answer arises as a special case under
the assumption of a constant likelihood. Other forms of the likelihood will lead to othcr answers. Since the
choice of a likelihood is an assessors prerogative—just like the choicc of a probability modcl—there is no
unique and correct way to bet on residual life. However, the traditional answer (presumably the one that will
be subscribed to by card carrying probabilists) will be the correct and unique answer, but only when its
argument is sheltered under the philosophical (or behaviouristic) principle of conditionalization.
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Abstract: The notion of quality of life (QoL) has recently received a high
profile in the biomedical, the biceconomic, and the biostatistical literature. This
is despite the fact that the notion lacks a formal definition. The literature on
QoL is fragmented and diverse because each of its constituents emphasizes its
own point of view. Discussions have centered around ways of defining QoL, ways
of making it operational, and ways of making it relevant to medical decision
making. An integrated picture showing how 2ll of the above can be brought
together is desirable. The purpose of this chapter is to propose a framework that
does the above. This we do via a Bayesian hierarchical model. Our framework
includes linkages with item response theory, survival analysis, and accelerated
testing. More important, it paves the way for proposing a definition of QoL.
This is an expository chapter. Our aim is to provide an architecture for
conceptualizing the notion of QoL and its role in health care planning. Our ap-
proach could be of relevance to other scenarios such as educational, psychomet-
ric, and sociomelric testing, marketing, sports science, and quality assessment.

Keywords and Phrases: Health care planning, hierarchical modeling, infor-
mation integration, survival analysis, quality control, utility theory

26.1 Introduction and Overview

A general perspective on the various aspects of the QoL problem can be gained
from the three-part paper of Fitzpatrick et al. (1992). For an appreciation of the
statistical issues underlying QoL, the recent book by Mesbah, et al. (2002) is a
good starting point. In the same vein is the paper of Cox et al. (1992) with the
striking title, “Quality of Life Assessment: Can We Keep It Simple?” Reviewing
the above and other related references on this topic, it is our position that QoL
assessment can possibly be kept simple, but not too simple! To get a sense as
to why we corme upon this view, we start by selectively quoting phrases from

’
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(z) “Many instruments reflect the multidimensionality of QoL,” Fitzpatrick
et al. (1992).

() “Summing disparate dimensions is not recommended, because contrary
trends for different aspects of QoL are missed,” Fitzpatrick et al. (1992).

(k) “In health economics QoL measures have ... more controversially (be-
~ come) the means of prioritizing funding,” Fitzpatrick et al. (1992).

(1) “The best understood application of QoL measures is in clinical trials,
where they provide evidence of the effects of interventions,” Fitzpatrick

et ol. (1992).

There is a variant of the notion of QoL, namely, the quality adjusted life
(QAL). This variant is designed to incorporate the QoL notion into an anal-
ysis of survival data and history. A motivation for introducing QAL has been
the often expresscd view that mcdical interventions may prolong life, but that
the discomfort that these may cause could offset any increase in longevity. The
following four quotes provide some sensc of the meaning of QAL.

(m) “QAL is an index combining survival and QoL...,” Fitzpatrick et al.
(1992).

(n) “QAL is a measure of thc medical and psychological adjustinents needed
to induce an affordable Qol. for patients undergoing problems,” Sen (2002).

(o) “QAL is a patients’ survival time weighted by QoL experience where the
weights are based on utility values — measured on the unit interval,” Cole
and Kilbridge (2002).

(p) “QAL has emerged as an important yardstick in many clinical studies;
this typically involves the lifetime as the primary endpoint with the in-
corporation of QAL or QoL measures through appropriate utility scores
that are obtained through appropriate item analysis schemes,” cf. Zhao
and Tsiatis (2000). ‘

26.1.2 Overview of this chapter

The above quotes encapsulate the essence of the QoL and its variant, the QAL.
They indicate the diverse constituencies that are attracted to a QoL metric and
the controversies that each constituency raises. For our objectives, the quotes
provide ingredients for proposing a definition of QoL and developing a metric for
measuring it. As a first step, it appears to us that any satisfactory discourse on
QoL should encompass the involvement of three interest groups, the clinicians,
the paticnts (or their advocates), and an economic entity, such as managers of
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Figure 26.1. D’s decision tree using QAL consideration (the unifying perspective
of QAL).

The quantities 8(P), 6(C), and 6(D) are explained later in Sections 26.3
through 26.5. The hexagon denotes D’s decision node and the triangle is a
random node R. At the decision node D takes one of several possible actions
available to D; let these actions be denoted by a generic d. At R, we would see
the possible outcomes of decision d. The quantity U(d, c) at the terminus of the
tree represents to D the utility of a2 decision d when the outcome is c¢. With
medical decisions it is often the case that d influences c.

The quantity @(D) is P’s QoL assessed by D subsequent to fusing the inputs
of P and C; Q(D) € {0,1]. Let P(X > z) denote P's survival function; this is
"assessed via survival data history on individuals judged exchangeable with P,
plus other covariate information that is specific to P. Together with P(X > z)
and 8(D), D is able to assess P’s QAL. There are two strategies for doing this.
One is through the accelerated life model whereby QAL(z) = P(XQ(D) >
z). The other is via a proportional life model whereby QAE(z) = (P(X >
z))V/Q(P)_ Note that the QAL metric is, like the survival function, indexed by
z. The effect of both of the above is to dampen the survival function of the
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8r<0

T po=0 pi=1 Bu= 4

Figure 26.2. Envelope showing the raﬂge of values for p(8;, 8;;)-

such omnibus questions generate a response on a multinomial scale, but here we
assume that P’s response takes values in the continuum [0, 1], with 1 denoting
excellent. Let 0(P) denote P’s response to an omnnibus question.

26.3.1 The case of a single dimension: D’s assessment of 0,
Given the responses z; = (z15,...,2x;) to a set of k questions pertaining to
dimension j, the likelihood of 8; and g; = (ﬁl,—» A :ﬁk,-) under the Rasch model
is -

k_ e2ii(85-8:5)

L(8;,85,z;) = o~
(65 Biiz;) .'1]1:1* 5P

(26.1)

for 6 € [0,1] and —o0 < fy; < -+ < fy; < +o0.
If we suppose, as is reasonable to do so, that §; and j; are a priori inde-

pendent with 7(6;) and 7 (8;) denoting their respective prior densities, then
by treating §; as a nuisance parameter and integrating it out, the posterior

distribution of 6 ‘is
W(Hj;':r:,,-)oc/p L(05, 85 z5)m(8;)m(B;)dp;. (26.2)
’ e ot

The question now arises as to what should w(6;) and =(8;) be? In order to

answer this question we first need to ask who specifies these priors, P, C, or
D? The answer has to be either C or D, because P cannot satisfy a prior and
then respond to a questionnaire. Furthermore, in principle, these priors have to
be D’s priors because it is D's decision process that we are describing. Thus,
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The quantity £(8(D);8(P),8(C)) denotes D’s likelihood that P will declare
a 8(P), and C will declare a §(C), were §(D) to be a measure of P’'s overall
quality of life. This likelihood will encapsulate any biases that P and C may
have in declaring their §(P) and 8(C}, respectively, as perceived by D, and also
any correlations between the declared values by P and C. The nature of this
likelihood remains to be investigated. The quantity mp(8(D)) is D’s prior for
6(D), and following our previous convention, we assume that it is uniform on
[0,1]. This completes our discussion on D’s assessment of §(D). It involves'a
0(P), 6(C) and connotes information integration by D at one level.

26.4.2 Encoding the positive dependence between the 8;s

One way to capture the positive dependence between the 8;s is through mixtures
of independent sequences. Specifically, we suppose, as if is reasonable to do so,
that given §(D) the §;s are independent, with 6; having a probability density
function of the form fp(f;|8(D)), 7 = 1,...,m. The subscript D associated
with f denotes the fact that the probability density in question is that of D. A
strategy for obtaining fp(8;16(D)) is described later, subsequent to Equation

(26.5).
With mp(8;;25), 3 = 1,...,m, and Zp(6(D)) at hand, D may extend the

conversation to 8(D) and obtain the joint distribution of 8, ...,8,, as
PD(G], Qo ,Gm; Ej], e ,Ejm,ﬁ(P), G(C))

= [ Plr 0Dy, z)ROODYAD) (264)
(D) .

in writing out the above, we have assumed that the 58, j =1,...,m, have
no bearing on #(D), once §(P) and §(C) have been declared by P and C, re-
spectively. Applying the multiplication rule, and supposing that the zis, ¢ #7
have no bearing on 8,, 7 = 1,...,m, the right-hand side of the above equation
becomes
m
L1 f0(8;16(D); z,)7p(6(D))ds (D). (26.5)
a(p) 71

We now invoke Bayes' law to write
fo(8;16(D); z5) o fp(8(D)165; z5)mp (85 z5),

where fp(8(D)|6;;z;) is D’s probability density of 0(D) were D to know 6;,
and in the light of ;. A strategy for specifying this probability density is to
suppose that §(D) is uniform: and symmetric around 6;, with endpoints 6; + ¢,
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There could be other possible ways for defining QoL. A few of these would
be to consider min;(8;), max;(8;), or mean;(8;), and to let QoL be a quantity
such as .

QoL = Pp(m}n(aj) > a)

for some a € [0,1]. Whereas the proposed definition(s) are appropriate in all
situations, it is not clear whether a unique definition of QoL is palatable to all
constitucnts, We see some merits to having a unique yardstick.

26.6 Summary and Conclusions

In this chapter we have proposed an approach for addressing a contemporary
problemn that can arise in many scenarios, the one of interest to us coming from
the health sciences vis-a-vis the notion of “quality of life.” What seems to be
common to these scenarios is information from diverse sources that needs to
be integrated, considerations of multidimcensionality, and the need to make de-

cisions whose consequences are of concern. Previous work on problems of this -
type has been piecemeal with statisticians mainly focusing on thc frequentist -

aspects of item response models. Whereas such approaches have the advantages
of “objectivity”, they do not pave the path of integrating information from mul-
tiple sources. The approach of this chapter is based on a hierarchical Bayesian
architecture. In principle, our architecture is able to do much, if not all, that is
required by the users of QoL indices. The architecture also leads to a stratcgy
by which QoL can be defined and measured in a formal manner. The current
literature on this topic does not address the matter of definition. This chapter is
expository in the sense that it outlines an encompassing and unifying approach
for addressing the QoL and QAL problem. The normative devclopment of this
chapter has the advantage of coherence. However, this coherence is gained at
the cost of simplicity. Some multidimensional priors with a restricted sample
space are involved, and these remain to be articulated. So do some likelihoods.
Finally, therc is the matter of conputations. However, all these limitations are
only of a technical nature and these can eventually be addressed. We are con-
tinuing our work on such matters, including an application involving real data
and real scenarios. The purpose of this chapter was to show how a Bayesian
approach can address a contemporary problem, and the overall strategy that
can be used to develop such an approach. The novel aspects of this chapter
are: the conceptualization of the QoL problem as a scenario involving three
groups of individuals, a structure whereby information from several sources can
be integrated, and a definition of the notion of QoL.
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Choosing a Coverage Probability for Prediction Intervals

Joshua LANDON and Nozer D. SINGPURWALLA

Coverage probabilities for prediction intervals are germane to
filtcring, forecasting, previsions, regression, and time series
analysis. It is a common practice to choose the coverage proba-
bilities for such intervals by convention or by astute judgment.
We argue here that coverage probabilities can be chosen by de-
cision theoretic considerations. But to do so, we need to spec-
ify meaningful utility functions. Some stylized choices of such
functions are given, and a prototype approach is presented.

KEY WORDS: Confidence intervals; Decision making; Filter-
ing; Forecasting; Previsions; Time series; Utilities.

1. INTRODUCTION AND BACKGROUND

Prediction is perhaps one of the most commonly undertaken
activities in the physical, thc engineering, and the biological sci-
ences. In the econometric and the social scicncces, prediction
generally goes under the name of forecasting, and in the actuar-
ial and the assurance sciences under the label life-length assess-
ment. Automatic process control, filtering, and quality control,
are some of the engineering techniques that use prediction as a
basis of their modus operandus.

Statistical techniques play a key role in prediction, with re-
gression, time series analysis, and dynamic linear models (also
known as state spacc models) bcing thc predominant tools for
producing forecasts. The importance of statistical methods in
forecasting was underscored by Pearson (1920) who claimed
that prediction is the “fundamental problemn of practical statis-
tics” Similarly, with de Finetti (1972, Chaps. 3 and 4), who
labeled prediction as “prevision,” and made it the centerpiece
of his notion of “exchangeability” and a subjectivistic Bayesian
development around it. In what follows, we find it convenient to
think in terms of regression, time series analysis, and forecast-
ing techniques as vehicles for discussing an important aspect of
prediction.

Joshua Landon is Post Doc, and Nozer D. Singpurwalla is Professor, Depart-
ment of Statistics and Department of Decision Sciences, The George Washing-
ton University, Washington, DC 20052 (E-mail: nozer@gwu.edu). Supported
by ONR Contract N00014-06-1-0037 and the ARO Grant W91 INF-05-1-0209.
The student retention problem was brought to our attention by Dr. Donald
Lehman. The detailed comments of three referees and an Associate Editor have
broadened the scope of the article. Professor Fred Joust made us aware of the
papers by Granger, and by Tay and Wallis.
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We start by noting that inherent to the above techniques is
an underlying distribution (or error) theory, whose net effect
is to produce predictions with an uncertainty bound; the nor-
mal (Gaussian) distribution is typical. An exception is Gard-
ner (1988), who used a Chebychev inequality in lieu of a spe-
cific distribution. The result was a prediction interval whose
width depends on a coverage probability; see, for example, Box
and Jenkins (1976, p. 254), or Chatfield (1993). It has been a
common practice to specify coverage probabilities by conven-
tion, the 90%, the 95%, and the 99% being typical choices. In-
deed Granger (1996) stated- that academic writers concentrate
almost exclusively on 95% intervals, whereas practical fore-
casters seem to prefer 50% intervals. The larger the coverage
probability, the wider the prediction interval, and vice versa. But
widc prediction intervals tend to be of little value [sec Granger
(1996), who claimed 95% prediction intervals to be “embarass-
ingly wide”]. By contrast, narrow prediction intervals tend to
be risky in the sense that the actual values, when they become
available, could fall outside the prediction interval. Thus, the
question of what coverage probability one should choose in any
particular application is crucial.

1.1 Objective

The purpose of this article is to make the case that the choice
of a coverage probability for a prediction interval should be
based on decision theoretic considerations. This would boil
down to a trade-off between the utility of a narrow interval ver-
sus the disutility of an intcrval that fails to cover an observed
value! It is hoped that our approach endows some formality to a
commonly occurring problem that seems to have been tradition-
ally addressed by convention and judgment, possibly because
utilities are sometimes hard to pin down. '

1.2 Related Issues

Bcfore procecding, it is important to note that in the context
of this article, a prediction interval is not to be viewed as a confi-
dence interval. The former is an estimate of a future observable

. value; the latter an estimate of some fixed but unknown (and of-

ten unobservable) parameter. Prediction intcrvals are produced
via frequentist or Bayesian methods, whereas confidence inter-
vals can only be constructed via a frequentist argument. The dis-
cussion of this article revolves around prediction intervals pro-
duced by a Bayesian approach; thus we are concerned here with

" Bayesian prediction intervals. For an application of frequentist

prediction intervals, the article by Lawless and Fredette (2005)
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is noteworthy; also the book by Hahn and Meeker (1991, Sect.
2.3}, or the article of Beran (1990).

A decision theoretic approach for specifying the confidence
coefficient of a confidence interval is not explored here. All the
same, it appears that some efforts in this direction were em-
barked upon by Lindley and Savage [see Savage (1962), p. 173,
who also alluded to some work by Lehmann (1958)]. By con-
trast, a decision theoretic approach for generating prediction in-
tervals has been alluded to by Tay and Wallis (2000) and devel-
oped by Winkler (1972). However, Winkler’s aim was not the
determination of optimal coverage probabilities, even though
the two issues of coverage probability and interval size are iso-
morphic. Our focus on coverage probability is dictated by its
common use in regression, time series analysis, and forecast-
ing.

Finally, predictions and prediction intervals should not be
seen as being specific to regression and time series based mod-
els. In general they will arise in the context of any probability
models used to make previsions, such as the ones used in relia-
bility and survival analysis {see Singpurwalla (2006), Chap. 5).

2. MOTIVATING EXAMPLE

Our interest in this problem was motivated by the following
scenario. For purposes of exposition, we shall anchor on this
scenario. '

. A university wishes to predict thc numbes of frcshman qtu-
dents that will be retained'to their sophomore ycar. Suppose that
N is the number of freshman students, and X is the number re-
tained to the sophomore year; X < N. Knowing N, the univer-
sity wishes to predict X. The prediction is to be accompanied
by a prediction interval, and the focus of this article pertains to
the width of the interval. The width of the interval determines
thc amount of funds the university needs to set aside for meet-
ing the needs of the sophomore students. The wider the interval,
the greater the reserves; bowever, large reserves strain the bud-
get. By contrast, the narrower the interval the greater is the risk
of the actual number of sophomores falling outside the inter-
val. This would result in poor budgetary planning due to insuf-
ficient or excessive reserves. Thus, a trade-off between the risks
of over-budgeting and under-budgeting is called for.

The student rctention scenario is archetypal because it arises
in sevéral other contexts under different guises. A direct parallel
arises in the case of national defense involving an all-volunteer
fighting force. Meaningful predictions of the retention of trained
personnel are a matter of national security. A more classical sce-
nario is the problem of inventory control wherein a large volume
of stored items ties up capital, whereas too little inventory may
result in poor customer satisfaction or emergency actions; see,
for example, Hadley and Whitin (1960, Chap. 4). Another (moie
contemporary) scenario comes from the Basel 1T accords of the
banking industry. Bank regulators need to assess how much cap-
ital a bank needs to set aside to guard agairist financial rigks tbat
abank may face; see Decamps, Rochet, and Roger (2004) for an
appreciation. From the biomedical and the engineering sciences
arises the problem of predicting survival times subsequent toa
major medical intervention or a repair.

In all the above scenarios, the width of the prediction interval
is determined by the nature of an underlying probability model
and its coveragc probability. This point is best illustrated by a
specific assumption about the distribution of the unknown X;
this is done next. But before doing so, it is necessary to remark
that neither the literature on inventory control, nor that on Basel
II accords, addresses the issue of optimal coverage probabilities.
In the former case, a possible reason could be the difficulties
associated with quantifying customer dissatisfaction.

2.1 Distributional Assumptions

Suppose that the (posterior) predictive distribution of X ob-
tained via a regression or a time series model is a normal (Gaus-
sian) with a mean u and variance o2, where u and o2 have
been pinned down; the normal distribution 1s typical in these
contexts. Then, it is well known {sce De Groot (1970), p. 228]
that under a squared error loss for prediction crror, 4 is the best
predictor of X. For a coverage probability of (1 — &), a predic-
tion interval for X may be of the form u = z4 /0. Here z47 is
such that for some random variable ¥ having a standard normal
distribution, P(W > z4/2) = a/2.

The quéstion that we wish to address in this article is, what
should a be? A small a will widen the prediction interval dimin-
isbing its value to a user. Indeed, a = 0 will yield the embar-

~.rassing (—o0, +00) ‘as a'prediction interval. By contrast, with

large values of a, one runs the risk of the predichion interval not
covering the actual value (when it matenalizes). Thus, we need
to determine an optimum value of a to use. To address the ques-
tion posed, we need to introduce utilities, one for the worth of a
prediction interval, and the other, a disutility, for the failure of
coverage.

3. CANDIDATE UTILITY FUNCTIONS

Utilities are a key ingredient of decision making, and the prin-
ciple of maximization of expected utility prcscribes the deci-
sion (action) to be taken; see, for example, Lindley (1985, p.
71).. Utilities measure the worth of a consequence to a deci-
sion maker, and disutilities tbe penalty (or loss) imposed by a
consequence. With disutilities, a dccision maker’s actions are
prescribed by the principle of minimization of expected disutil-
ities. The unit of measurement of utilities is a “utile.” However,
in practice utilities are measured in terms of monetary units,
such as dollars, and this is what we shall assume.

In the context of prediction, we make the natural assuinp-
tion that, in principle, one prefers a prediction interval of width
zero over any other prediction interval. This makes the utility of
any prediction interval of nonzcro width a disutility. Similarly,
the failure of any prediction interval to cover an observed value
results in a disutility. Following Winkler (1972}, the two disu-
tilities mentioned above are assumed to be additive, though this
need not be so. Thus, for the scenario considered here, one en-
deavors to choose that value of a for which the total expected
disutility is a minimum.
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Figure 1. The disutility of noncoverage.

3.1 The Disutility of a Prediction Interval

The width d, of a prediction interval of the type described
in Section 2.1 is d; = 2z4/20; here the coverage probability is
(1 — a). Let ¢(d,) be the disutility (or some kind of a dollar
penalty) associated with a use of d,. Clearly ¢(d,) should be
zero whend, = 0, and ¢(d,;) must increase with d,, since there
is a disadvantage to using wide intervals. A possible choice for

¢(dg) could be
| c(dg) = df, ey

for # > 0. When f < 1, ¢(d,) is a concave increasing func-
tion of d,, and when # > 1, c¢(d,) is convex and increasing in
d, . The choice of what 8 must be depends on the application. In
certain applications, such as target tracking, § < 1 may be more
desirable than # > 1; in others, such as econometric forecast-
ing, a convex disutility function may be suitable. The choice of
(3.1) for a disutility function is purely illustrative. The proposed
* approach is not restricted to any particular choice for c(dy).

3.2 The Disutility of Noncoverage

A possible function for the disutility caused by a failure of
the prediction interval to cover x, a realization of X can be
prescribed via the following line of reasoning.

Suppose that Uy = u + zq/20 is the upper bound, and L, =
U—z4/20, the lower bound of the (1—a) probability of coverage
prediction interval. Let L (d,, x) denote the disutility or penalty
loss (in dollars) in using a prediction interval of width d, when
X revcals itsclf as x. Then L(d,, x) could be of the form

Silx = Uy), x > Uy,
L{d;,x)=1 0, Lo €% < Ugs 2)
ﬁ(La —x)) x < La,

where f] and f; are increasing functions of their arguments,
which encapsulate the penalty of x overshooting and under-
shooting the prediction interval, respectively.

As illustrated in Figure 1, the said functions will generally
be convex and increasing because a narrow miss by the interval
will matter less than a large miss. Furthermore, these functions
need not be symmetric. For example, as shown in Figure 1, the
penalty for undershooting the interval is assumed to be more
severe than that of overshooting.

3.3 The Expected Total Disutility

With ¢(d,) and L{d,, x) thus specified, there remains one
caveat that needs to be addressed. When the a is chosen, the
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value of x is not known and thus L(d,, x) needs to be aver-

- aged over the possible values that x can take. This is easy to

do because the predictive distnibution of X has to be specified.
Accordingly, let

R(d,) = Ex [L(da, X)), €]
be the expected value of L(d,, x). In decision theory, R(d,) is
known as the risk function; it is free of X. R(d,) encapsulates
the risk of noncoverage by an interval of width d,, with R(d,)
decrcasing in d,.

Since ¢(d,) is devoid of unknown quantities—indeed d, is a
decision variable—the matter of taking an expectation of c(d,)
is moot. We may now combine ¢(d,) and R(d,) to obtain the
total expected disutility function as

D(do) = c(da) + R(dy). *

As mentioned before, the additive choice, albeit natural, is not
binding. We choose that value of a for which D(d,) is a mini-
mum. This is described next.

4. CHOOSING AN OPTIMUM COVERAGE

PROBABILITY
To make matters concrete, suppose that c(d,) = +/dg, so
that the B of Equation (1) is 1/2. Also, since dg = 22430,

Ug = pt + zypp0 canbe written as Uy = p + du/2 sxmllarly,
Ly=p—d,/2.

For the f) and f2 of Equation (2), we let fi(x — Up) =
(x = U,)?/40 and f5(L, — x) = (L, — x)?/10. These choices
encapsulate a squared-error disutility, and make f; and f;
asymmetric with respect to each other. Writing U, and L, in
terms of d,, we have f)(x — Up) = (x — u — dy/2)? /40, and
2L —x) = (u —da/2 — x)*/10.

To compute the risk function of Equation (3) we need to
specify u and o2 of the normal distribution of X. Based on a
Bayesian time series analysis of some student retention data,
these were determined to be z = 2140 and 02 = 396, With the
above in place, we may compute the total expected disutility as

D(dy) = +/d; + R(dg),

where
da/2
Ry = [ Gl i,
u+d, /2
p—dy /2 d 2 2
" 0‘""}% £ (xydx,

where f(x) is the probability density at x of a normally dis-
tributed random variable with mean g and variance 2.

The computation of R{d,) has to be done numerically, and a
plot of D{(d,) versus d,, for d, > 0, is shown in Figure 2.

An examination of Figure 2 shows that D(d,;) attains its min-

imum at d; = 62. This suggests, via the relationship d, =




25
-
Did) Minimum at dg = 62
1=
.—--"'"’.-.’-‘
° e
4] Values of d, the width of
the Prediction interval
¢ ¢ e 53 ™ 1w 128 1%

Figure 2. Total expected disutility versus d,.

2zg/20 with ol
normal distribution, that the optimal coverage probability for
this scenario is 0.88. Using coverage probabilities other than
0.88 ~ 0.90, say the conventional 0.95 or 0.99 would yield a
wider interval but the utihity of such intervals would be less than
that provided by the 0.90 covcrage probability.

5. GENERALITY OF THE APPROACH AND SOME
CAVEATS

The proposed approach is general because it rests on the sim-
ple principle of minimizing D(d,), the total expected disutility
function—Equation (4). If D(d,) attains a unique minimum,
then a unique optimal coverage probability can be arrived upon.
If the minimum is not unique, then several optimal coverage
probabilitics will result, and the user is free to choose any one
of these. There could be circumstances under which D (d,) will
not attain a minimum, and the method will fail to produce an
answer. The optimality conditions which ensure a minimum
value of D(d,) is a matter that needs to be formally addressed,
but with ¢(d,) monotonic and concave {or convex), and with
L(da,x) U-shaped as shown in Figure 1, D(d,) will indeed
attain a minimum. The choice of L{d,, x} prescribed in Equa-
tion (1) is quite general. It is easily adaptable to one-sided inter-
vals, and also to the inventory and banking scenarios mentioned
before. Furthermore, it is conventional in life-length prediction
studies and in statistical inference wherein square error loss is a
common assumption.

The assumed distribution of X with specified parameters
plays two roles. One is to average out L(dq, x) to produce
the risk function R(d;). In this role the choice of thc distri-
bution of X is not restrictive because its purpose here is to
merely serve as a weighting function. Any well-known distri-
bution can be used, especially when R(d,) is obtained via nu-
merical methods, as we have done with the normal. By contrast,
frequentist prediction intervals that entail pivitol methods limit
the choice of distributions..The second role played by the dis-
tribution of X, is to facilitate a relationship between d; and a.
In the case of the nommal distribution with mean z and vari-
ance o2 yda = 22a/2a here z does not matter. This type of
relahonshlp will arise with any symmetrical distribution, such
as the Student’s-z, the triangular, the uniform, the Laplace, ctc.
A relationship between d, and a in the case of the exponen-
tial with scale 1 tumns out to be quite straightforward, indeed
more direct than that encountered with the normal; specifically

.

= 396, and a table look up in the standard-

dy = % log[(2 - a)/a]. By suitable transformatious, the case of
other skewed distributions such as the lognormal, the Weibull,
and the chi-squared can be similarly treated. A difficult case
in point is the Pareto distribution (popular in financial math-
ematics) wherein P(X > x;w,8) = (w/(v + x))?. Here
dy = w[(1 + a/2)~ V8 — (a/2)~1/#], and the relationship be-

.tween d,; and a is involved for the method to be directly in-

voked.

Finally, besides thc caveat of D(d,) not having a minimum,
the other caveat is the dependence of an optimal coverage prob-
ability on data. Specifically, the use ofa posterior distribution of
X to obtain R(d,) makes this latter quantity depend on the ob-
served data with the consequence that in the same probler one
could conceivably end up using a different coverage probability
from forecast to forecast. Unattractive as this may sound, it is
the price that onc must pay to ensure coherence. However, this
dependence on the data becomes of less concern once the pos-
terior distribution of X converges, so that the effect of the new
data on the posterior diminishes. The same situation will also
arise when the distribution of X is specified via a frequentist
approach mvolving a plug-in rule.

6. SUMMARY AND CONCLUSIONS

The thesis of this article is to argue that choosing coverage
probabilities for prediction intervals should be based on deci-
sion theoretic considerations. The current practice is to choose
these by convention or astute judgment. Prediction intervals are
one of the essentials of regression, time series, and state space
models. They also occur in conjunction with previsions based
on probability models entailing the judgment of exchangeabil-
ity. Furthermore, the principles underlying the construction of
prediction intervals share some commonality with those involv-
ing inventory planning and banking reserves.

The decision theoretic approach boils down to the minimiza-
tion of total expected disutility. This disutility consists of two
components. One is a disutility associated with the width of the
interval and the other is associatcd with the failure of an inter-
val to cover thc observed value when it reveals itself. The pro-
posed approach is illustrated via a consideration of stylized util-
ity functions. It can be seen as a prototype for approaches based
on other utility functions. The approach also entails a use of the
normal distribution to describe the uncertainties. Again, this dis-
tributional assumption is not essential; other distributions will
work equally well.

We emphasize that the matenal here pertains to prediction
intervals, not confidence intervals. It would be interesting to de-
velop a decision theoretic approach for choosing the confidence
coefficient of a confidence interval. To the best of our knowl-
cdge, this remains to be satisfactorily done.

[Received June 2007. Revised December 2007.]
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describing an ill-defined but much-discussed phenomenon.
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Damage Processes

Introduction and Background

There is extensive and burgeoning material on the
topic of damage and its associated factors like
aging, cumulative damage, degradatlon, deterio-
ration, fatigue, health status, and quality of life.
This material appears in both the biostatistical and
the engineering reliability literatures. However, these
notions suffer from the feature that they lack a
precise definition. Rather they convey an abstract
but intuitive import in the sense of a decrease in
residual (or remaining) life. This decrease in resid-
ual life is conceptualized via the feature that an
item experiencing aging and degradation will fail
when the damage hits some barrier or threshold.
Alternatively, it is supposed that at inception, every
item is endowed with a resource that gets depleted
because of damage, and that the item fails when the
resource gets exhausted. Thus, for example, to engi-
neers like Bogdanoff and Kozin [1], “Degradation
is the irreversible accumulation of damage through-
out life that leads to failure.” The term damage is
not made precise; however it is claimed that dam-
age reveals itself via surrogates or markers, such as
cracks that grow in size, corrosion, measured wear
(i.e., depletion of material), and so on. Similarly,
Sobczyk [2] sees fatigue as “a phenomenon which
takes place in units experiencing time-varying exter-
nal actions which manifest in a deterioration of the
unit’s resistance to carry its intended loading”. In
the biostatistical literature, aging pertains to a unit’s
position in a state space wherein the probabilities of
failure are greater than its former position. Aging
manifests itself in terms of biomedical and physical
difficulties experienced by individuals, and in certain
scenarios, via things like low-CD4 cell counts; these
serve as biomedical surrogates, or what are known as
biomarkers.

The markers mentioned above are, in most cases,
observable and measurable entities. Much of the
recent work on what is known as degradation model-
ing centers around assessing lifetimes via an analysis
of the observed markers and their hitting times to
a threshold (¢f. Doksum [3), Doksum and Normand
[4], Lu and Meeker [5], Ebrahimi {6), and Lechmann
[7]). However, treating the observable markers as
substitutes for the unobservable degradation process

that actually causes failure is tantamount to putting
the cart before the horse. This is because the unob-
servable degradation process spawns the observable
marker process, and is therefore its cause. An excep-
tion, however, is the work of Whitmore et al. [8)
and of Lee et al. [9], who treat the degradation and
the marker as separate but related processes. Also,
see Nair [10], who makes the point that data on the
observable surrogates of degradation help sharpen
lifetime assessments. In this vein, a noteworthy con-
tribution is by Cox [11] who systematically artic-
ulates the roles that the observable and the unob-
servable play in lifetime assessments. The premise
upon which our bivariate stochastic process model
with a random threshold is based has been inspired
by the papers of Whitmore ef al. [8] and Cox [11],
and our work on hazard potential (see Singpurwalla
[12; 13, p. 79)).

Preliminaries: The Hazard Potential

For an appreciation of the bivariate stochastic process
model as a description of the damage process, some
preliminaries on the notion of a hazard potential
would be helpful. Accordingly, let T denote the
lifetime of a unit and let h{(r) be the hazard rate
of P(T>1),12>0; let H(t) = fj h(u) du be the
cumulative hazard function at 1. Then it is easy to
see that

P(T 2 1; h(1),1 2 0)
=exp(—H(@))=P(X 2 H(@)) (1)

where X has an exponential distribution with scale
one. The random variable X is called the hazard
potential of the item, and it represents an unknown
“resource” that the itcm is endowed with at inception.
Furthermore H(r) is a mecasure of the amount of
resource consumed by time ¢, and h(r), the ratc at
which the resource is consumed at . The unit fails
when H(t) exceeds X; that is when H(f) hits the
random threshold X.

When the ratc at which a unit’s resource gets
consumed is random, k(t) is described by a stochas-
tic process, making {H(t); ¢t > 0} a stochastic pro-
cess as well. However, this latter process has to
be nondecreasing. The unit fails when the process
{H(t); t = 0} hits a barrier X, where X is also
random with a unit exponential distribution. Can-
didate stochastic processes for {H(r); t >0} arc
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also alluded to in Singpurwalla {12). Since H(¢)
is, in principle, nondecreasing in ¢,¢ > 0, the pro-
cess {H(t); t >0} is a candidate for describing
a damage process. Furthermore, since the conven-
tional view claims that an item fails when the dam-
age hits a threshold, the cumulative hazard and the
damage reflect a parallel feature. This motivates us
to view the (cumulative) damage as being isomor-
phic with the cumulative hazard. Doing so makes
our perspective different from that which is cur-
rently being discussed in literature, Like (cumulative)
damage, the cumulative hazard is not observable.
However, the cumulative hazard does influence the
time to failure. Consequently, the cumulative haz-
ard and the (cumulative) damage are to be seen as
latent variables, and for that matter, so is the hazard
potential X.

A Stochastic Process Model for Damage
and its Markers

Because markers are closely linked with damage,
any suitable model for the damage process should
be accompanied by some sort of description for the
markers as well. The most general way to do this
would be to assume that the markers arc realiza-
tions of stochastic processes, just as the (cumulative)
damage is a stochastic process. The simplest way
to proceed would be to suppose that there is only
one marker to focus attention upon, so that a bivari-
ate stochastic process {H (1), Z(t); t > 0} would be a
suitable description of the damage and its marker. As
stated in the section titled “Preliminaries: The Hazard
Potential”, the process {H (¢); ¢ > 0} is nondecreas-
ing in ¢. However, the process {Z(#); ¢ = 0} need not
be restricted to being nondecreastng. Indeed, markers
such as crack growth and CD4 cell counts fluctuate
around some trend, and thus one is free to choose
any suitable model for the process {Z(t); ¢ = 0}. A
Wiener process appears to be the model of choice,
but this need not be so.

Thus to summarize, our proposed model for the
(cumulative) damage and its associated marker is
a bivariate stochastic process {H(t), Z(t); t = 0}
with H(z) nondecreasing in 1, and Z(t) free to
fluctuate around some constant or trend. We term
such a process a degradation process. Since H(t)
spawns Z(¢), the two processes {H(t); t > 0} and
{Z(t); t = 0} need to be linked; that is, they need

to be cross-correlated. Without such linkage, the
marker process cannot serve as predictor of failure,
and the statistical exercise of degradation modeling
is not meaningful. One way to achieve this linkage is
to describe {Z(t); ¢ > 0} by a Wiener process, and
the unobservable (cumulative) damage process by a
Wiener maximum process, namely,

H(t) = sup (Z(s); s> 0} 2

O<s<t

This strategy has been proposed in Singpurwalla
[14]), wherein a Bayesian approach for inference
about lifetimes, using data on the marker process,
is also described. The item fails when H(¢) hits
the (random) threshold X. Whereas the model of
equation (2) could be a starting point, there is a
caveat that needs to be addressed. Specifically, since
Z(¢) is spawned by H(z), the latter is the cause of
the former. This means that H(¢) must lead Z(z),
and so any linkage between the two processes in
question should incorporate a time lag. The model
of equation (2) does not do this because here H(t)
is determined retrospcctive to Z(¢) and therefore lags
Z(r), instead of the other way around. Thus H(¢) and
Z (1) need to be connected, with the observable Z(¢)
lagging the unobservable H(r). This is a possible
topic for future research.

In the section titled “Candidate Processes for
Damage and Markcrs”, we give an overview of
some modeling strategies that have been proposed
for thc damage process {H(1); t = 0}, as well as
for thc marker process {Z(¢); ¢ > 0} when each are
treated separately; that is when no distinction is made
between the damage (or degradation) process and
the marker process. Supplementary material on the
above can also be found in Chapters 7 and 8 of
Singpurwalla [13].

Candidate Processes for Damage and
Markers

The origins of the work on threshold crossing of
cumulative damage as a basis for failure goes back
to Epstein [15], Esary {16), and Gaver [17]. The
idea of describing cumulative damage as a stochastic
process can be traced, to the best of our knowl-
edge, to Cox [18, p. 91], and to the Ph.D. thesis of
Morey [19]. However, thc granddaddy of all work on
damage processes is the remarkable paper of Esary
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et al. [20], who (without articulating what damage
roeans) describe damage by a compound Poisson
process with increments that are positive and have the
Markov property. Failure occurs when the said pro-
cess hits a random barrier whose distribution {s expo-
nential. The choice of an exponential distribution for
the barrier is arbitrary, and Esary et al. [20] show that
the hitting time has an exponential distribution. More
recently Zacks (21, 22] has elaborated on this theme.

In the biostatistical arena there is a setup parallel
to that of Esary et al. [20], which does not allude to
damage, deterioration, or aging, but to the number of
mice at some time f, that have typhoid organisms.
The growth of such mice is described by a pure birth
process, and the first passage time to a barrier is
investigated. The specifics are in Cox and Miller (23,
p. 160), and in Cox [11].

The Esary et al. [20] architecture is enhanced by
Lemoine and Wenocur [24], who model wear (ic.,
damage) by a suitable random process but who also
allow for failure due to trauma. The latter is described
by a Poisson process, the rate of which depends

on the statc of wear. An item fails when the wear

reaches a threshold or when the item experiences fatal
trauna. Thus in the model of Lemoine and Wenocur
[24), the wear and the trauma processes compete with
each other for an item's lifetime. The random process
considered by the above authors is a diffusion process
that is driven by a Wiener process. In a subsequent
paper, Lemoine and Wenocur [25] describe wear by
a shot-noise process. A disadvantage of the diffusion
and the shot-noise process is that the wear (to us
damage) is not monotonically nondecreasing. To
rectify this deficiency, Wenocur [26]) considers a
gamma process for describing wear. His development
of the gamma process proceeds along the following
lines.

Partition the time interval into subintervals' of
length A, and let X (n) denote the damage (or wear)
at time nh, n =1, 2, . ... Suppose that the damage at
time (n + 1)h is prescribed via the relationship

X(n+1) = X(n)=a(X@m)en +B(X(n)h ()

where o, # are constants, and (£,} is a sequence
of independent and identically distributed random
variables having a gamma distribution with shape
parameter h > Q. Letting 2 } 0, we have

dX() =ea(Xu7)) dy() + B(X@7) @)

where {y (1)} is a gamma process.
In integral terms, equation (4) becomes the stocha-
stic integral

1 H
X(@)=X©) + /0 @(X() )+ [ AXGY ds
®)

Since the gamma process has nonnegative incre-
ments, the wear (or damage) process is increasing.
For an overview of the gamma process and their con-
structions, see Singpurwalla [27], or van der Weid
[28]. Whereas a gamma process model may be attrac-
tive in scenarios wherein the damage causing shocks
occur frequently, the models by Zacks [21, 22] for
the compound Poisson process case and for the com-
pound renewal process case, respectively, seem to be
more appropriate when the shocks are infrequent.

Candidate Marker Processes

In engineering reliability, an archetypical marker pro-
cess is crack growth, whereas in biostatistical studies,
it appears that CD4 cell counts is a commonly men-
tioned biomarker. With archetypical markers come
archetypical stochastic processes for {Z(r); ¢+ > 0},
and one such process is the Wiener process with a
drift parameter n and a diffusion paramcter 02 > 0,
see Doksum [3] and Whitmore et al. [8). As men-
tioned before, the marker is often viewed as a proxy
for damage, and failure is said to occur when the
marker process hits a threshold. As is well known,
the hitting time to the threshold (assumed fixed and
known) of a Wiener process has an inverse Gaussian
distribution (sec Singpurwalla [13, p. 68 and 136],
for a discussion of this distribution).

The Wiener process has independent increments,
so does a gamrma process. This amounts to saying that
the increments of crack size are independent of the
existing crack length. This latter phenomenon is not
always true. The bigger the crack, the bigger is its
growth. This motivates one to consider transforma-
tions of the Wiener process. Furthermore, the crack
growth phenomenon also exhibits abrupt growth. The
Wiener process does not encapsulate such abruptness
of growth. With the above in mind, Schabe [29] pro-
poses the following as a model for X(z), the size of
a crack at time £,7 > Q. Let X (1) = (M(1))°, where

M@)=bt + W) +uP() (6)

Here W(r) is a Wiener process with variance
a1, and P(1) is a Poisson process with intensity
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A. The constant b > 0 describes a trend, and the
constant a is such that a > (<)l encapsulates a
progressive (regressive) velocity with which the crack
grows. Under the model of equation (6), Schabe
[29] obtains the hitting time of X(f) to h >0, a
barrier. This distribution does not have a closed-form
solution. However, the mean and the variance of this
distribution are available; these are #*/2(b + ;22) and
h'/a (02 + An?) /(b + nA)>, respectively.

In Ebrahimi [6], a strategy that parallels those of
Lemoine and Wenocur [24] and of Schabe [29] is
taken, but instead of looking at the growth of a single
crack, an ensemble of k cracks, each having its own
growth rate is considered. Specifically, it is supposed
that the growth of the ith crack, i =1,...,k is
govemed by the stochastic differential equation

dX; @) =,@O)Xi() +eX,(1) dWE@) (D)

where A;(t) is the growth rate of the cracks, o > 0O is
a constant, and {W(£); ¢ > 0} is a standard Wiener
process with mean 0 and variance ¢. Using standard
results (i.e., the Ito formula) it can be seen that

2

Xi(t) = X (0) exp [A.‘(t) = -02—1 at UW(I)] ®
where A;(1) =f°‘ Ai(s) ds, and X(0) is the initial
crack size, assumed to be known, and is the same
for all the & cracks. The item fails when the size
of the largest crack hits some threshold, say a. If T
denotes the passage time of the largest crack to the
threshold a, then it can be seen that for 0 < u <¢

P(T=1)

=P [W(u) < (Xl'é‘l'lsl'lk (%u - alAi(“)) +C)]

)
where ¢ = b/o and b = loga — log X (0).

Computation of the above follows from results on
the the times taken by the Weiner process 1o hit a
threshold.

Motivated by a model of Durham and Padgett
[30], Park and Padgett [31] propose a model for
cumulative damage, assuming that the damage is
an observable measurable entity. This amounts to
interpreting cumulative damage as a marker, like
crack growth. The scheme proposed by Park and
Padgett [31] is noteworthy, because it facilitates the
introduction of both a Brownian motion process and

a gamma process as the driving processes for crack
growth. Here, for some functions c(-) and A(.), it is
assumed that

de(X (1)) = h(X (1)) dD(2) (10)

where D(¢) is the damage at ¢, and X(¢) is the
cumulative damage at . As a consequence of the
above

/ h(X( 0 dc(X(u))—/ dD(u) = D(t) —lzl((l);

By choosing various forms for the function ¢(.)
and h(), and a stochastic process for {D(¢); ¢t = 0},
different models for X(f) can be attained. For
example, with () = 1, c(¥) = logu, and a Brow-
nian motion (or Wiener process) for {D(t); ¢t = 0],
we obtain a geometric Brownian motion process
for X(¢). With h(u) = 1, c¢(u) = u and a Brownian
motion process for {D(t); ¢ > 0} we obtain a Gaus-
sian process for X (¢). With h(u) = l,c(u) =u anda
gamma process for {D(t); ¢t > 0} we obtain a gamma
process for X (). Whereas the Gaussian process is not
always positive, the geometric Brownian motion pro-
cess is always positive but not increasing. In contrast,
the gamma process is both positive and increasing.
Characteristics of the hitting times of the geomet-
ric Brownian motion and the gamma process to a
fixed and known threshold are also obtained by Park
and Padgett [31]. This completes our overview of
stochastic process models for the damage process and
the marker process — when viewed separately — save
for the work of Desmond [32], who articulates on a
two-parameter family of life distributions introduced
by Birnbaum and Saunders [33]. This distribution is
motivated via the notion that failure caused by fatigue
is due to the initiation, growth, and extension of a
dominant crack past some critical length.

The essence of Desmond’s [32] idea is based on
the notion that it is the environmental stresses called
impulses that cause a crack to grow, so that if X; is
the size of the crack after the ith impulse, then

Xip1=Xi + Mng(Xe), i =0,1,2,...  (12)
here [I1; is taken to be the magnitude of the ith
impulse; e.g. the stress caused by the ith impulse. The
I1;"s are assumed to be random. If VX; = X;,; — X;
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is taken to be sufficiently small, then

L Xa dy
I; = —
Zl: / 169

Xo

a3

is approximately normal; g(y) ts some function of y.
The quantity X is the initial size of the dominant
crack.

With g(y) = 1, and assuming that the [;’s h:}ve
a common mean g and variance o2

Xa
oxa / B vewmed a8
Xo

{6)]
If X. denotes the critical crack size, and T the

time to failure of the unit experiencing the impulses,
then

T =inf{t: X(1) > X.} (15)
Simple manipulations show that
=1 (Xc))
PT=<t)=&| ——m— 16
(r=n ( py (16)

Where ®(.) is the unit normal distrlbution func-
tion. The distribution function given abovc is a
member of the Birnbaum-Saunders [33] family of
distributions.
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The Hazard Potential:

Nozer D. SINGPURWALLA

Introduction and Overview

This is an expository acticle directed at reliability theorists, survival analysts, and others interested in looking at life history and event
data. Here we introduce the nation of a hazard potential as an unknown resource that an item is endowed with at inception. The item fails
when this resource becomes depleted. The cumulative hazard is a proxy for thc amount of resource consumed, and the hazard function
is a proxy for the rate at which this resource is consumed. With this conceptualization of the failure process, we are able to characterize
accelerated, decelerated, and normal tests and are also able to provide a perspeclive on the cause of interdependent lifetimes. Specificaily,
we show that dependent life lengths are the result of dependent hazard potentials. Consequently, we are able to generate new families of
multivariate life distributions using dependent hazard potentials as a seed. For an item that operates in a dynamic environment, we argue
thal its lifetime is the killing time of a continuously increasing stochastic process by a random barrier, and this barrier is the item’s hazard
potential. The killing time perspective enables us to see competing risks from a process standpaint and to proposc a framework for the joint
modeling of degradation or cumulative damage and its markers. The notion of the hazard potential generalizes to the multivariate case. This
generalization enables us to replace a collection of dependent random variables by a collection of independent exponentiatly distributed
random variables, each having a different time scale.

KEY WORDS: Competing-risk proccss; Degradation process; Dependence; Exchangeable lifetimes; Killing times; Lévy process: Marker;
Multivariate failure models; Random killing; Reliability; Survival analysis.

1. INTRODUCTION AND OVERVIEW

1.1 Preliminaries: The Hazard Rate and
the Hazard Potential

The mathematical theory of rcliability, the statistical theory
of life history or survival analysis, and the underlying premise
of actuarial sciences are driven by a notion unique to them:
the hazard rate function (see, e.g., Gjessing, Aalen, and Hjort
2003). The hazard rate function is both a theoretical and a de-
scriptive tool that also plays a fundamental role in event history
analysis. Specifically, there is a parallel between the hazard rate
function and the intensity function of a nonhomogeneous Pois-
son process (see Grandell 1975), and also between the intensity
function of a doubly stochastic Poisson process and the hazard
rate function when the latter is viewed as a stochastic process
(see Kebir 1991). There are two virtues of the hazard function:
(a) an interpretive content, in the sense that the aging charac-
teristics of single and one-of-a-kind items can be encapsulated
by the shape of the hazard function, and (b) that under some
regularity conditions (see Yashin and Arjas 1988; Singpurwalla
and Wilson 1995), the hazard function uniquely determines a
survival function. There are other sccnarios in which (a) is also
germane; these have been alluded to by Gjessing et al. (2003);
some examples are an understanding of neuronal degeneration,
the sleep—wake cycles of individuals, and the longevity of hu-
mans (see Gavrilov and Gavrilova 2001).

This is an expository article directed at reliability theorists,
survival analysts, actuaries, and others interested in event his-
tory analysis. Our purpose here is to introduce a new notion, the
hazard potential (HP) as a conceptual tool that provides a differ-
ent way of looking at thc stochastic behavior of lifctimcs. The
term “potential” refers to a feature parallel to that of potential
energy in physics. The difference hcre is that wc are alluding to
an item’s resistance to failure rather than its capacity for work.
In Section 3 of this article we put forth the view that the HP can
be interpreted as the (random) amount of an unknown resource

Nozer D. Singpurwalla is Professor of Statistics and Decision Sciences, De-
partment of Statistics, George Washington University, Washington, DC 20052
(E~ma2il: nozer@gwu.edu). The author thanks Hakon Gjessing for his help re-
garding the distribution of killing times of an integrated geometric Brownian
moation process. The detailed comments by two referees arc gratefully acknowl-
edged. This research was supported in part by U.S. Army Research Office grant
W911NF-05-1-0209 and Office of Naval Research grant N00014-06-1-0037.

with which an item is endowed at inception, and that thc itcm
fails when this resource is depleted. Looking at lifetime in terms
of a depleting resource can be more satisfying than one based
on conditional probabilities, which is what the hazard function
rcpresents.

Besides providing an altemnative platform for conceptualizing
the process-that leads to failure, and for processes that compete
for failure, the HP has the following attractive features:

e Itis inherently robust, in the sense that the HP of any and
all items has an exponential (1) distribution on a suitably
chosen time scale.

e It provides a context-free means for characterizing accel-
erated, decelerated, normal, and partially accelerated life
tests.

e In the language of probabilistic causality (see Suppes
1970), it can be seen as either a prima facie or a genuine
cause of dependence between lifetimes.

¢ It provides a vehicle for developing new families of uni-
variate and multivariate survival functions by looking at
the killing times of continuously increasing stochastic
processes to random barriers.

« 1t offers a natural platform from which the abstract phe-
nomenon of degradation (or damage accumutlation) and its
markers can be stochastically described.

The HP generalizes to the multivariate case. This general-
ization, when used in conjunction with the notion of a hazard
gradient due to Marshall (1975a), enables us to represent a col-
lection of dependent lifetimes in terms of a collection of inde-
pendent exponential (1) random variables, each on a different
time scale.

In light of the foregoing features, we may liken the HP to the
notion of a hidden parameter in physics. Hidden parameters per
sc do not have a physical reality, but nonethcless arc valuable
because they provide explanations [or observable phenomena.

1.2 Overview

This article is organized as follows. In Section 2 we introduce
our notation and review some basic relationships. In Section 3
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we definc the HP and interprct its naturc from both physical and
probabilistic standpoints. We also provide a way to formally
distinguish between accelerated, decelerated, normal, and par-
tially accelerated life tests from a context-free standpoint. The
state of the art in accelerated testing seems vague when it comes
to being specific about what a normal life test means; it treats
this matter as a given. We conclude Section 3 by generaliz-
ing the HP to the nonexponential case through the notion of a
G-hazard potential. In Section 4 we present several qualitative
results pertaining to the claim that dependent HPs are a prima
facie cause of dependent lifetimes, whercas a common HP is
a genuine cause of dependence. Dependent HPs are a manifes-
tation of commonalities in manufacturing or, in the context of
biological units, a shared genetic makeup. In Section 5 we put
the material of Section 4 to work by generating new families
of dependent lifetimes using dependent HPs as a seed. In Sec-
tion 6 we develop new families of survival functions for items
destined to operate in random environments. The material here

revolves around obtaining the distribution of the killing time of

a continuously increasing stochastic process by a random bar-
rier that is an item’s HP. Although the approach of Section 6
is general, attention focuses only on the following processes:
the running maxima of a Brownian motion, a Markov process
with nonnegative increments, a family of nonnegative Lévy
processcs, and the integral of a geometric Brownian motion.
The material of Sections 5 and 6 is not purely conceptual; it has
the attractiveness of having a practical import. This can be seen
as an argument in favor of looking at the HP as a useful tool. In
Section 7 we explore the role of the HP in articulating the no-
tion of competing-risk processes and casting the phenomenon
of degradation and its markers in a manner that accords with
that described in the engineering and materials science litera-
ture. We devote Scction 8 to the multivariate case, which entails
a relationship between the hazard gradient and what we intro-
duce as a conditional HP. This connection allows us to replace
a collection of dependent lifetimes by a collection of indepen-
dent exponential (1) lifetimes, each indexed by a different time
scale. In Section 9 we close the article by reemphasizing the
point of view that the HP offers an alternative perspective for
appreciating the failure process and that it is a useful conceptual
tool for understanding the cause of interdependent lifetimes in
engineering and biological systems. We close Section 9 by ex-
pressing our hope that the role of the HP could turn out to be as
useful to rcliability and survival analysis as the failure rate and
the intensity functions.

2. NOTATION, TERMINOLOGY, AND
PRELIMINARY RELATIONSHIPS

Let T denote the (unknown) time to failure of a unit that is
scheduled to operate in some environment, labeled £. Based on
the characteristics of the unit, and on knowledge of how the
unit interacts with £ (vis-3-vis T), one is able to subjectively
specify h(r), t > 0, the hazard rate function of P(T > 1), the
survival function of T, assumcd to bc absolutely continuous.
We interpret A(z) through the relationship

hDdi=Pa<T <1+ 4T =1,

where the right sidc is a conditional probability. A formal de-
finition of A(#) can be found in the recent book of Aven and
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Jensen (1999). We claim that the hazard function is a theoreti-
cal (or abslract) notion because, unlike lifetimes that can be di-
rectly observed, conditional probabilities are either subjectively
specified or inferred from data.

Let H(r) = f; h(4) du; H(s) is known as the cumulative haz-
ard at time 1. Observe that H(z) is nondccreasing in 7. But
what does H(s) mean? Whereas h(f)dr can be given an in-
tuitive import, H(#) cannot! It is not the sum of conditional
probabilities—because the conditioning event changes with 1—
and there is no law of probability that leads us to H(z). Thus
H(t) does not have a probabilistic connotation. Yet H(r) plays
a key role in reliability and survival analysis, because of the ex-
ponentiation formula (see Barlow and Proschan 1975, p. 53),
which says that with H(7) specified,

P(T>t,H({),1>0)=¢eH0, )

In the foregoing equation, plus those that follow, we intro-
duce the convention that all quantities to the right of the semi-
colon arc vicwed as being specified. In contrast, all quantities
to the right of the vertical slash are conditional, that is, if thcy
are known.

Equation (1) relates the survival function P(T > ¢) to H(1);
however, H(#) lacks an interpretive content. Our interest in this
article is motivated by the desire to interpret H(?) in a manner
that provides insight into the relationship of (1).

In the case of a one-of-a-kind item, h(z) dt cncapsulates an
assessor’s judgment about the inherent quality of an item and
the environment in which it opcratcs. By quality, we mean
a resistance to failure-causing agents, such as crack growth,
weakening of the immune system, and so on. Consequently, the
hazard rate of an item of poor quality that operates in a be-
nign environment could be smaller than that of a high-quality
item that operates in a harsh environment. In effect, the quantity
h(1) dt encapsulates an assessor’s subjective view of the manner
in which an item and its environment interact. Thus, in princi-
ple, A(f) dt does not have a physical reality.

Turning attention to the right side of (1), we note that e
is the survival function of an exponentially distributed random
variable, say X, if its scale parameter is 1, evaluated at H(¢),
that is,

—H{)

PTz25H@, 120 =" =PX>HnID. @

3. INTERPRETATION: THE NOTION OF
A HAZARD POTENTIAL

Thus far, we have introduced three quantities, X, H, and T.
Given any two of these, we can find the third using (2). But what
insight can (2) provide about H(#) and X? We see two possibil-
ities, one providing an indifference principle for reliability and
survival analysis and the other having a physical connotation.

To appreciate the first, we see from (2) that, corresponding to
every nonnegative random variablc T having an absolutely con-
tinuous survival function F(z) = P(T > 1), there exists a random
variable X taking values H(z), 0 < H(#) < oo, whose survival
function is an exponential with a scale parameter of 1. The sur-
vival function of 7T is indexed by ¢, ¢ > 0, whereas that of X
is indexed by H(t) = — f(; dF (1) /F(u). We can summarize the
foregoing in the following theorem.
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Theorem 1. The lifetime of any and all items has an expo-
nential (1) distribution on H(¢), the cumulative hazard, as the
scale.

The essence of Theorem 1 has been noted by Cinlar and
Ozekici (1987); it is stated here as a prelude to Theorem 5,
which pertains to the multivariable case. In the context of point
processes, Theorem 1 has a parallel with the result that any non-
homogeneous Poisson process can be transformed by a change
in clock time to a homogeneous Poisson process with rate one
(see Kingman 1964). This parallel leads us to make precise the
notions of accelerated and normal life tests in Section 3.1.

3.1 The Physical Connotation

To appreciate the physical connotation implied by (2), we
note that because

PT<t; H®),t=0)=PX <H®I|),

we-may claim that the time to failure 7 of an item coincides
with the time at which the cumulative hazard H(r) crosses a
random threshold X, where X has an exponential (1) distribu-
tion (Fig. 1), thatis, T = H~' (X).

The random threshold X, where X = H(T), is defined as the
HP of the itcm. Furthermore, because thc exponential (1) dis-
tribution of X does not depend on £, we may interpret X as
an unknown resource with which the item is endowed at the
time of its inception. With X considered a resource, H(f) can be
inferpreted as the amount of resource consumed by time ¢. Con-
sequently, the hazard rate, h(t) = ‘%H (1), can be considered the
rate at which the resource is consumed. With this alternative
perspective on H(¢) and h(t), we may vicw a normal life-test
as onc for which H(r) = ¢, a uniformly accelerated (deceler-
ated) test as one for which H(t) > (<) t, and a partially accel-
erated (decelerated) test as one for which FF(f) crosses ¢ from
above (below). The qualifier accelerated (decelerated) signals a
contraction (expansion) of the clock time from ¢ to H(f), and
by shifting attention from the applied stress (which is what is
normally done when discussing accelerated tests) to time, we
achieve the context-frec feature mentioned carlier. The concept

Cumulative Hazard, H(f)
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of looking at failure as the depletion of a resource dates back to
a Soviet physicist Sedyakin (1966), who enunciated this view-
point without a formal architecture.

It is useful to note that the exponential (1) random variable X
has an entropy of 1, and also the lack of memory property if and
only if H(t) =t. A change in clock time from ¢ to H(¢) changes
the entropy and dcstroys the memoryless property.

3.2 The G-Hazard Potential

There is a generalization of Theorem 1 such that the HP
can be made to have a distribution other than an exponen-
t2al (1). Specifically, suppose that G is some absolutely contin-
uous distribution function with support [0, co); let W = G~1.
Then it can be seen (Bagdonavicius and Nikulin 1999) that
Y & WE(T)) has the survival function G, irrespective of .

Consequently;
P(T 2 1) = P(WFET) = WFE@)) = P(Y > W(e H1)),
so that
P(T <) =P(Y < W(e~H®)). ©))

Equation (3) implies that the item fails when W(e H#®), ex-
ceeds a threshold Y, where Y has the distribution G. We refer
to Y as the G-hazard potential and W(e=H®) as the G-resource
used until time t. Then we have, as a generalization of Theo-
rem 1, the following resull.

Theorem 2. The lifetime of any item can be made to have
any absolutely continuous survival function G, provided that
G is indexed by G~ (exp(—H())).

As of now, Theorem 2 is mainly of an academic intcrest; it is
given here for completeness.

4. HAZARD PQOTENTIALS AND
DEPENDENT LIFETIMES

The aim of this scction is to discuss the nature of depen-
dence between lifctimes and offer a new perspective on the

A
a 1l X=a
"
1
[}
]
i
b ! 1 x=b
i i
[}
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I
I
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1
1
(]
1
! > Time ¢
0

T, (= Time to Failure When X=ga)

Figure 1. Relationship Between Cumulative Hazard, Threshold X, and Failure Time.
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cause of intcrdependence: We argue that the HP offers a con-
venient platform for doing this. We view dependenee and inde-
pendence from a subjectivistic (de Finettian) viewpoint; that is,
. two events A and B are dependent if knowledge about B causes
us to change our two-sided bets on A.

Because H(t) encapsulates an assessor’s view about the in-
teraction between an item’s quality and its environment, it is
likely that two different items operating in a common environ-
ment will have different H(r)’s, say Hj(f) and Hj (t). Similarly,
for a single item, changing its environment from &) to & will
change its cumnulative hazard from Hy(¢) to Ha(#) (Fig. 2).

Figure 2 suggests that the lifetimes 77 and T3 of two items
having the same hazard potential will be dependent. Equiva-
lently, the lifetimes 77 and T of a single item scheduled to
operate in two environments, £ and &, will also be depen-
dent. However, from a subjectivistic perspective, the depen-
dence will come into play only when one is able to specify
Hj(#) and Hz(2), or a relationship between the two, when only
one of them is known. This is because knowledge of, say, T to-
gether with H(t) will tell us somcthing about the unknown X,
and if X| and X3 are dependent, then knowledge of X; will en-
lighten us about X2, Consequently, X2 together with H, (£) will
help change our assessment of 73. To summarize, if the HPs X
and X3 are dependent, then the lifetimes 7) and 7> will also be
dependent, provided that H|(¢) and Hz(t) are known or a rela-
tionship between them is spccified. In contrast, if X; and X3 are
independent, then so are 7 and 73, irrespective of whether or
not H((¢) and Hy(#) are known. These assertions are summa-
rized in the remarks that follow.

Remark 1. When Hj(t) and Ha(1), t > 0, are known, life-
times 7' and 73 are independent if and only if their hazard po-
tentials, X) and X3, are independent.

Proof. When X and X; are independent,

P(Xy = Hi(), X2 > Ha(12))
=P = Hi(n)) - P(Xz = H2(12)),

Cumulative Hazard, H(t)
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for any Hi(t;) and Hz(t). Consequently,
P(Ty 211, T2 > 12; Hi(1), Ha (1), > 0)
=P(X; 2 H\(1), X2 2 H2(22))
= P(X) = Hi(1)) - P(X3 = Ha(12))
=P(Ty 2 11; Hi(D),+ > 0) - P(T2 > 135 Hy (1), £ 2 0).

Thus, knowing H (¢) and H»(¢), T and T are independent, and
similarly for the converse.

When Hi(t), i=1,2 or both { =1 and 2, for £ > 0 are not
known, Remark 1 is weakened in the sense that only the “if”
part holds. Specifically, T and T> are independent even when
X3 and X, are dependent. The subjectivistic liné of reasoning
justifying this claim goes as follows.

Observing T provides no insight about X), because H) (1)
is not known. Consequently, there also is no insight into
X2 or T2. Thus Ty and 7, are independent. Mathematically,
without knowing H;(r), i = 1,2, we are unable to relate
P(T) > 1, T > 1p) with the distribution of X; and X;. We sum-
marize the foregoing in the following remark.

Remark 2. Lifetimes T and T are independent whenever
H () and (or) H3(#), t > 0, are not known.

As a consequence of Remarks 1 and 2, we may statc the fol-
lowing theorem.

Theorem 3. Lifetimes T; and T3 are dependent if and only
if their hazard potentials X; and X, are dependent and if H;(¢)
and H>(t) arc known.

Theorem 3 puts aside the often expressed view that the life-
times of items sharing a common environment are necessar-
ily dependent (see Marshall 1975b; Lindley and Singpurwalla
1986), that is, it is a common environment that causes depen-
dence among lifetimes. Theorem 3 asserts that it is the com-
monalities in the HPs or identical HPs, both of which result
in dependent HPs, that cause of interdependent lifetimes. De-
pendent HPs are a manifestation of similarities in design, man-
ufacture, or genetic makeup. In the language of probabilistic

WA

’WL Threshold X

0 - T,

> Time ¢

T, (= Time to Failure Under ¢, )

Figure 2. Effect of Changing Environment on Lifetimes.
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causality of Suppes (1970), the common environment can be
interpreted as a spurious cause of dependent lifetimes, whereas
dependent (or identical) HPs are their prima facie (or genuine)
cause.

The role of Theorem 3 is to generate new families of depen-
dent lifetimes using multivariate distributions with exponenlial
marginals as a seed; see Section 5. Remarks 1 and 2 pertain to
the two extreme cases in which the H;(8)’s, i = 1, 2, are either
known or not. An intermediate case is one in which an H;(t),
say Hy(?), t = 0, is known and the other is not, except for the
fact that H;(t) > H>(t). For such scenarios, we have the follow-
ing.

Remark 3. Suppose that H(t) > (<) H(r) and that either
Hi(t) or H(9), t > 0, is known; then X and X, dependent im-
plies that 7 and T are also dependent.

Proof. The proof is by contradiction. For this, suppose that

X1 and X; have the Bivariate Exponential Distribution (BVE) of
Marshall and Olkin (1967); specifically, for A, A, and A13 > 0,

P(X1 2 x,X; > y) = exp(—A1x — Azy — Aizmax(x, ),
= exp(— (A1 + A12)x — A2y),

The marginal distribution of X;, P(X; > x) = exp(—(Ai +A12)x),
i =1,2. For the X;’s to be dependent HPs, we need to have
(Aj+ A12)=1,fori=1,2, and X3 > 0; this would imply that
Ay= Az =A.Thus

if x> y.

P(X| > x, X > y) = exp(—(x + X2y)).

If we sct x = H(t1) and y = H(t2), for some ¢, £ > 0, then
x >y would imply that H(1;) = H;(t) — 8, for some unknown
§ > 0. Consequently,

P(X) > x, X, > y) = P(X1 = Hi(11), X2 > Hi(12) — 38)
= exp(~(Hi (1) + A2 (H1(12) - 8))). (4)

Given the foregoing, we need to show that 77 and 7 are depen-
dent. Suppose that they are not; then

P(Ty =11, Ta = ta; Hi (1), Ha(12), 11, 12 = 0)
=P(T1 > t1; Hi(1), 1 2OP(T2 > t3; Ha(t2), 12 > 0)
= P(X1 = Hi(11))P(X2 = Ha(12))
= exp(—H1 (1)) exp(— (111 (t2) — §))
= P(X) = Hi(11). X» = Hi (1) —'8), (5)

because the first term of (5) does not entail elements of the sec-
ond term. Thus we have

P(X1 = H1(1), X2 = H (1) — 8)
= exp(—(Hi(1) + Hi(r2) — 8)). (6)

Equation (6) agrees with (4) if A, = 1. However, A, = 1 implics
that Aj, = 0, which contradicts the hypothesis that X; and X,
are dependent. The proof when H; (1) < H,(r) follows along
similar lines.

A broader, but weaker version of Remark 1 pertains to the
case where X; and X, are exchangeable. Here again, we re-
quirc that H;(#), i = 1,2, t > 0, be specified. We then have the
following result.
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Remark 4. If the hazard potentials X; and X, are exchange-
able and if H| (), H2(¢),t > 0, are known, then the lifetimes
T)and T, are also exchangeable.

Proof. Letx = H(t) and y = Hz(¢) for any ¢, , > 0; then
P(X1 2 x, X2 2y) =P(T1 > 11, T2 > tz; Hi(11), Ha(12)).
Similarly,
PX1 2y, X22x)=P(T1 2 1, T2 > t1; Hi(t), H2(12)).
Because the exchangeability of X; and X, implies that
PX;2x,X2>y)=P(X1 2y, X3 > ),
the statement of the remark now follows.

5. GENERATING NEW FAMILIES OF
DEPENDENT LIFETIMES

The aim of this section is to put Theorem 3 to work. Here we
show how dependent HPs can be used to gencrate new families
of multivariate distributions through multivariate distributions
with unit exponentials as a seed. Of course, this is by no means
the only way to generate multivariate distributions. For the pur-
pose of illustration, we limit attention to the bivariate case and
consider as seeds the bivariate exponentials of Marshall and
Olkin (1967), Gumbel (1960), and Singpurwalla and Youngren
(1993; henceforth S-Y), and a bivariate exponential induced hy
the copula of a bivariate Pareto distribution.

5.1 The Bivariate Exponential of Marshall and Olkin

Supposc that the HPs X; and X, have the BVE of Marshall
and Olkin (1967), with A1, A5, and X1, as parameters. To ensure
that the marginal distributions are unit exponentials, we need to
have Ay = X2 =X and A + Ay =1, with A3 > 0; the latter
inequality ensures dependence between X and X;.

Let 77 and 73 be the lifetimes corresponding to X; and X,
and the cumulative hazard functions H,(¢;) and Hz(z;). Then,
because

PN zu Tazn;)
=P(X1 > Hi(t1), X2 = Hy(82); X, A12)
= exp[—A(H (1)) + Ha(12)) — A2 max(Hy (1), Ha(82))].

we can generate families of bivariate distributions for 7| and 7,
by assuming specific forms for H;(¢), for i = 1, 2. In particular,
if Hi(t;) = (citi)®, i=1,2, then

P(T| > 11, T2 > ;) = exp[— {Al(111)®' + (212)P]
+ Az max[(ey 1)1, (@20)?1}],

which is a bivariate Weibull of the Marshall-Olkin type.
If Hi(t;) = o;In(1 4+ Bity), i=1, 2, then

P(Ty=h,Ta>t;)

1 Aoy 1 Aoy
“(1'*'/311‘1) (1+ﬁ2!2>
' 1 PSVL3 1 PRPLY)
X min[( ) A ( ) ]
1+ piny 1+ Bty
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which resembles the bivariate distribution of Muliere and
Scarsini (see Kotz, Balakrishnan, and Johnson 2000, hence-
forth KBJ, pp. 408 and 595). This distribution is also known
as the Marshall-Olkin—type Pareto distribution (see KBJ 2000,
p. 612). Note that H;(1;) = (a;t;))% [a;In(1 + Bi1;)] corresponds
to an inereasing (decreasing) rate of consumption of the HP.
Continuing in the foregoing vein, if H(s;) = a;j(efi% — 1),
i=1, 2, then the induced distribution of 7} and T is given as

PMizn,Tazn;)
= el . expl Lo ref1 + @ppef

+ Aya max (o (€A1 — 1), ap (P2 — 1))}],

and if H;(5) = (1 — e %)/(1 +e7%), i = 1, 2, the logistic func-
1—¢h

tion, then
1—e™
1+en 2 1 +e"2)

- fl—e7h 11—

+ max{ —, ——— 2
(1 e )
Neither of these distributions is of a recognized form. The first
form of H;(#;) corresponds to an exponential rate of consump-
tion of the HP, whereas the second corresponds to a rate of that

which starts at % at r = 0 and asymptotes to | as ¢ becomes
infinite.

PTizn.Tazn; )= CXP[—{K<

5.2 The Bivariate Exponential of Gumbel
Following the notation of Scction 5.1, suppose that for some
parameter 0 <9 <1,
P(X1 > Hy(11), X2 > Ha(12); 6) .
= exp[—H1(t1) — Ha(r2) — 6H1 (1) Ha(12)).

This is the bivariate exponential of Gumbel (1960), with mar-
ginals that are always unit exponentials. 1f Hi(f;) = (ait)P,
i=1, 2, then the induced distribution of 7 and 7> is
Py =20, Tazt;-)

= exp[—{(1)” + (22)® + O(an1))?! (212)? };

we call this distribution the bivariate Weibull of the Gumbel
type.

If Hi(t)) = a; In(1 + Bit;), i = 1,2, then
P(Mizn,Ta>10;)

1 ] 1 *@
:(1+ﬁm) (1+ﬁztz)

X cxp(—Oalaz In(1 + B1ty) In(1 + }9212)),

which is a multivariate distribution with marginals that are a
Pareto; we call this distribution a bivariate Pareto of the Gumbel

type.
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5.3 The Bivariate Exponential of S-Y

Here again, we follow the notation of Section 5.1 and sup-
pose that for some parameter m,

P(X1 > Hi(n), X2 > Ha(2); m)

[V = m-min(H1 (1), H2(12)) + m - max(H\(11), Hy(82))
- 1+ m(Hy(n) + Ha(12))

% \/e—m-max(Hl(ll).Hz(lz)).

This distribution has unit exponential marginals if m = 2.
If we set Hy(t1) > Ha(12), then

P(X1 = Hi(t1), X2 = Hy (1))

_ \/ 1 = 2Hy(t2) + 2H1 ()

TS T

The multivanate distributions for T, and 7>, when derived
assuming that the H;(#;) take any of the forms given in Sec-
tion 5.1, are not of any recognizable type; they appear to be
new. This is not surprising, because the bivariate exponential
given earlier is also not of a well-recognized form.

5.4 Unit Exponentials Induced by Copulas

New families of multivariate distributions with unit exponen-
tials can be created by the method of copulas and by invok-
ing Sklar’s theorem in reverse (see, e.g., Nelson 1995). We can
then use these multivariate exponentials as a seed for generating
other families of multivariate distributions.

As an example of the foregoing, eonsider a bivanate Parcto
distribution of the form

b a+tl
P(X, > Xozxy )= —m8m8mm— :
(X1Zx1,X2 2x257) (b+x1+x2)
its copula, foru >0andv <1, is
Caltt,v) = uAv—1+((1 ~ ) =@+ D 4 (1 —y) @D _ )=+,

If wesetu =1 —exp(—H;(#;)) and v = 1 —exp(—H> (1)), then
it can be seen (see Singpurwalla and Kong 2004) that

P(X1 = H(t1), X2 > Ha(12); a)

_(ex (Hl(m) - (Hz(rz))_l)““
I a+1 P a+1 ’

which is a bivariate distribution with unit exponentials as mar-
ginals. We may now choose any desired form for the H;(r;),
i = 1,2, to produce new families of bivariate distributions of
the form P(T} > 11, T > 13 -).

6. CUMULATIVE HAZARD PROCESSES AND
RANDOM KILLING

Our discussion thus far has been bascd on the premise that
H(1) is a deterministic function of ¢. This may be a reasonable
first step. A more meaningful strategy is to assume that H(#)
is described by some nondecreasing and nonnegative stochas-
tic process {H(¢); r > 0}. There is some precedence for doing
so in both the biostatistical and the reliability literature (see
Singpurwalla 1995), although the motivation there is different
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from what we give here. This is because we see H(r) as a proxy
for usage until time ¢, and conceptualizing usage as a random
process is more natural than simply declaring that the cumu-
lative hazard is a stochastic process. With. H(¢) described as
a stochastic process, the time to failure 7 will be the hitting
time of {H(2);t > 0} to a random barrier X, which is the HP
of the item; see Figure 1. Put alternatively, the lifetime of an
item corresponds to the killing time of {H(); z > 0} by a ran-
dom threshold X. The notion that lifetimes correspond to hitting
times of stochastic processes to some barrier was also explored
in the pioneering work of Esary, Marshall, and Proschan (1973;
henceforth EMP) and in the more recent works of Durham
and Padgett (1997), Pettit and Young (1999), Yang and Klutke
(2000), and Duchesne and Rosenthal (2003), the difference be-
ing that to these authors, the underlying stochastic process is
an observable phenomenon such as degradation, aging, or cu-
mulative damage. A consequence of the foregoing is that the
results thus obtained pertain to specific scenarios. In contrast,
the approach of considering any failure time as the hitting time
of a process (H(?); ¢ > 0} to arandom threshold X whose distri-
bution is an exponential (1) provides a common architecture
for developing classes of survival functions, with each class
determined by the nature of the process. For example, when
(H(1);t > 0} is a positive nondecreasing Lévy process (special
cases of which are the compound Poisson, the gamma, and the
stable), a general result for the survival function is obtained. We
discuss this and related matters in what follows.

6.1 The Hazard Rate and Cumulative Hazard Process

The purpose of this section is to obtain a result analogous
to that of (2) when H() is a stochastic process. To obtain an
analog to the left side of (2), we proceed formally by consider-
ing a probability measure space (£2, F, P) on which all random
variables and processes are defined.

Let {h(s); s = 0} be a nonnegative and right-continuous sto-
chastic process, and let T be a real-valued random variable
denoting the lifetime of an item. For ¢ > 0, we define the
o-algebras F; and F as

Fi=oh(s);s <1} F=ah(s);s>0).

Then {h(s); s > 0} is defined as the hazard rate process of T, if,
fort > 0,

and

P(T >t F)y= cxp(— /:h(s) ds).
0

1t now follows, from a result of Pitman and Speed (1973), that
T is a randomized stopping time, so that

!
P(T > t|F;) =exp (—/ h(s) ds), t>0.
0

Consequently,
t
P(T>1t)= E[exp (— / h(s) ds)]
0

P(T>9 = E[exp(—H(t))], @)

where {H(); ¢ = 0} is the cumulative hazard process. Equa-
tion (7) is our analog of the left side of (2).

or

N

For an analog of the right side of (2), we assume that
{H(t); t > 0} is a nonnegative, nondecreasing stochastic process
and consider the hitting time of this process to a random thresh-
old X whose distribution is an exponential (1). Then, assuming
independence of H(t) and X,

PT>n=PX>H®) = /w exp(—y)H(dy)
0

= E[exp(=H(®))], ®

where H,(-) is the density of the distribution of H(¢). Thus an
analog to the right side of (2), with {H(r); ¢ > 0} a stochastic
process, is

P(T > 1) = E[exp(—H(®))]. ©®

The right side of (9) is the Laplace transform of the process
{H(t); t > 0}, which for the Lévy process has an explicit form,
namely

E[exp(—H(1))] =CXP|:—I/0 (1 —CXP(*)’)]v(d)’)], (10

where v(dy) is the Lévy measure of the process and the integral
term is the Laplace exponent of the Lévy process; complete the
Lévy-Khinchin formula of Protter (1990). An attractive feature
of the argument that leads to (8) is the straightforward manner
in which it is developed. In contrast, the argument of (7) calls
for some appreciation of randomized stopping rules associated
with stochastic processes.

In what follows we consider several possible candidates for
the process {H(t);t > 0}, starting with the simplest and mov-
ing to the more general. In most cases, explicit expressions for
P(T > 1) are obtained; in others, computations and approxima-
tions may be needed.

The choice of which of the following processes to use de-
pends on the application. Presumably, because H(f) encapsu-
lates the resource used until time ¢, the selection of a suitable
process for {H(r); ¢ > 0} would depend on the pattern of use of
the item.

6.2 Cumulative Hazard Processes and
Their Survival Functions

The process {H(t); t > 0} is required to be nonnegative, non-
decreasing, and right-continuous. Thus our choice of candi-
date processes is limited. Clearly, the Brownian motion process,
which has often been used to describe degradation and wear,
must be eliminated. However, certain functionals of the Brown-
ian motion, such as the running maxima, are viable candidates,
and this is thc first process considered.

6.2.1 The Maxima of Brownian Motion. Suppose that
{W(1);t > 0} is a standard Brownian motion process [i.e.,
W(0) = 0]; for any ¢ > 0, W(#) has a Gaussian distribution
with mean 0 and variance ¢, and {W(s); ¢ > 0} has stationary
independent increments. If we sct

H(®) = sup (W(s)},

Q<s<t

t>0,

then the process {H(); t > 0} will be continuous, nonnegative,
and nondecreasing; this is called a Brownian maximum process.
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It is well known that T, & inf(¢ > 0; W(t) > x} = inf{t >
0; H(¢) > x}, the time at which the process {W(f); ¢ > 0} first
hits a barrier x, x > 0, has an inverse-Gaussian distribution (see
Pettit and Young 1999). Consequently, the hitting time of the
process {H(f); t-> 0} to x also has an inverse-Gaussian distrib-
ution, specifically,

P(Ty < 1) =2(1 ~ d(x/V1)),
where (1) =f" L -5ry

—0 J2r
Because the time to failure of an item is the time at which the
process {H(t); t > 0} first hits the (HP) X, where X is exponen-

tial (1),
PT<n= / 21— GGV dr= 1 - 2620(— i),
0

so that

P(T > ) =267 & (— /1), 11

an cxpression that is easily evaluated.

6.2.2 The Compound Poisson Process. The compound
Poisson process with an (arrival) rate A and iid jumps J;, i =
1,2,..., with P(J; < w) = G(w) is another possible candidate
for describing the process {H(f); ¢ > 0}. This process increases
only by jumps of size J;, i=1,2,.... If we assume that the
Ji’s are also independent of the HP X, then, given A,

o _ar k 00
A
P(T>1) =Y e—kﬁ')—f GW(x)e~* dx,
k=0 : 0

where G®)(.) is the k-fold convolution of G(-) with itself. The
foregoing simplifies (see EMP 1973) as

P(T > t]A) =exp(—A1),

for all G(°) with G(x) =0, x<0.

When A > 0 is unknown, we may average out P(T > 1]))
with respect to any distribution of A. This would lead us to con-
clude that P(T > 1) has a hazard rate function A(¢) that is a de-
creasing function of ¢ > 0. Thus items experiencing use of a
resource described by a compound Poisson process will neces-
sarily have lifetimes with a heavy-tailed distribution function.
For example, if A has a gamma distribution, then P(T > 1) will
have a Pareto distribution, that is heavy-tailed.

6.2.3 A Special Markov Process. EMP (1973) considered a
Markov process for {H(¢); ¢t > 0} with a special feature that de-
scribes proneness to wear. Whcereas their interpretation of H(f)
is unlike ours, their special feature is appropriate to our setup,
specifically (a) H(0) =0; (b) Ht+ A)~H(@) >0, Y1,A >0;
and (c) P(H(t + A) — H(t) < ulH(t) =2) } z, t. The practi-
cal import of (c) is that proneness to wear increases with us-
age. With the foregoing in place, EMP (1973) showed that for
any barrier x, the hitting time of the process {H(¢); ¢ > 0} has
a distribution with a failure rate function A(u) such that 71'(1)
increascs in ¢, where

(12)

7[(1):} /0 h(u) du. (13)

Such distributions are said to have an increasing hazard rate
average property. Because the barrier in our case is the HP X,
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wherc X has an exponential (1) distribution, we note that for
the special Markov process for {#(z); ¢ > 0}, the survival func-
tion P(T > t) can be written as an exponential (1) mixture of
distributions with the increasing hazard rate average property.

6.2.4 A Nonnegative Lévy Process. An omnibus way of de-
scribing {H(r); t > 0} is through a nonnegative Lévy process,
that is, a continuous process with stationary independent in-
crements. Such processes are examples of Markov processes
and include the compound Poisson, the gamma, and all stable
processes as special cases. Furthermore,.a Lévy process renews
itself at stopping times and has a strong Markov property, and
all of the nonnegative Lévy processes are limits of compound
Poisson processes (see Protter 1990). Thus the process pro-
vides a convenient general platform for describing {H(¥); ¢t > 0}
and makes the result of (12) based on the compound Poisson
process central. Besides the foregoing generalities, the main at-
traction of considering a Lévy process stems from the fact that
its Laplace transform (given by the Lévy—Khinchin formula)
takes a form identical to that of (10), namely .

[o0]
P(T>1) =exp[—t/ (1- exp(—y))v(dy)], (14)
(i
where v(dy), the Lévy measurc, characterizes both the expected
frequency and the size of the jumps (nonnegative in our case)

in a Lévy process.

For the compound Poisson process of Section 6.2.2, v(dy) =
AG(dy), and if G had a gamma distribution with scale ¢ > 0
and shape g > 0, then

v(dy) = rafy?~le " dy/ T (B).

In the case of a gamma process [i.e., when for any ¢ > 0, H(?)
has a gamma distribution with scale o > 0, and shape B1],

v(dy) = (Be™ ¥ /y) dy,
whereas when {H(2); t = 0} is described by a stable proccss,

(15)

ap
v(dy) = ————y "D dy
r-p’
for parameters o > 0 and 8 € (0, 1). Plugging (15) and (16)
into (14) will give P(T > 1) for the special cases of the gamma
and the stable process; also see (18) in the next section.

(16)

6.2.5 Continuous and Increasing Strong Markov Processes.
One of the more striking results in stochastic processes theory
pertains to continuous and increasing processes that have the
strong Markov property. It has been shown that such processes
have deterministic paths up to random killing. Essentially, this
means that a continuous increasing strong Markov process is
esscntially dcterministic. This result dates back to work of
Blumenthal, Getoor, and McKean (1962). Loosely speaking,
if {H(s);¢ > 0} is an increasing, continuous, strong Markov
process with a state space of form [a, b), then therc cxists a
strictly increasing continuous function k(-) on the state space
such that for all 1 > 0, H(s) = k~[k(H(0)) + ¢]; for specifics,
see corollary 1 of Cinlar (1979). Thus the sample path of the
{H(#);t > 0} process is a deterministic function of the ini-
tial state of the process, namely H(0) =0, and time 1. Once
the process {H(f); ¢ > 0} is considered (essentially) determinis-
tic, obtaining the hitting time of H(f) to a barrier is relatively
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straightforward; it is also deterministic if the barrier is a known
constant. Randomness of hitting times cntcrs into the picture
when the barrier is random, which is so in our case.

As an illustration of the foregoing, suppose that the process
{H(#); t > 0} is an increasing Lévy process. Recall that Lévy
processes are continuous, have stationary independcnt incre-
ments, and thus are strong Markov. When this is the case, the
function k(-) is such that for some a > 0,

o
H() = at+/ (1 —exp(—uf))v(duy, a7
0
where v(du) is the Lévy measure of the process.

If we set a =0 and assume that {H(z); ¢ > 0} is a gamma
process, then v{du) is given by (15), and the deterministic cu-
mulative hazard function turns out to be

H() = ,Blog(a—_H), >0
o
(see Kebir 1991 for more details).
The unit fails when H(¢) gets killed by a threshold x; that is,
Ty, the time to failure for a fixed threshold x, 1s

Ti=ca(e/f —1).

Avcraging with respect to its exponential (1) distribution, wc

have
: 1\7*?
P(TZI)=(1 +—) ;
o

which is a Pareto distribution. Note that thc Parcto distribution
also arises in the context of a compound Poisson process for
{H(1); t > 0} when the distribution of A, the arrival rate, is as-
sumed to be a gamma; see the discussion after (12).

To summarize, in practically all of the cases that we have
considered so far, closed-form expressions for P(T > ) are
available. The sole exception is the special Markov process of
Scction 6.2.3, for which our result is mercly qualitative. Our fi-
nal case, considered next, pertains to an exponential functional
of Brownian motion; here a closed-form result is not available.
We chose this case because of its novelty and plausiblc applica-
bility.

(18)

6.2.6 Integrated Geometric Brownian Motion Process. In
Section 6.2.1 we considered the running maximum of a stan-
dard Brownian motion as a model for {H(z);: > 0}. Here we
consider another functional. Specifically, let

I
H(f) =/ exp(2W(s)) ds, (19)
0

where W(s) is a standard Brownian motion. We choose the
scalar 2 for convcnience; its role will bccome clcar in the
sequel. Observe that exp(2W(s)) is always positive and that
H() is continuous and strictly increasing in ¢. Recall that
a Browpian motion has continuous sample paths. Whereas
Supg.s< {W(s); s > 0} increases in 7 by steps, the H(r) of (19)
is a stri_ctly increasing function of . As stated earlier, Brown-
ian motion has often been used to describe crack growth and
degradation. The foregoing transformation of the process is ne-
cessitated by the requirement that H () be nonncgative and non-
dccreasing. Our sense is that the H(f) of (19) also could be a
viable candidate for describing degradation and wear.
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With the foregoing in place, we let
T, =mf{t> 0: H() =x}, (20)

for some barner x > 0; that is, Ty is the hitting (killing) time
of the process {H(z); 1 > 0} to a threshold x. Because fI(2) is

continuous and increasing, we have that
P(T:> 1) = PH() < x). 21

To evaluate the right side of the forcgoing, we nced to know
the density of H(¢) for a fixed value of ¢. For convenience, we
denote H(t) by £, and, following the notation of Yor (1992),
notc that

P(Hyedv) /27:/“’ ¥ v,
s e exp 2t+2coshy

x sinhysin (th) (1 — ®(/vcoshy)) dy,
where ¥ () is as defined in Section 6.2.1. Consequently,
P(T:>1= /OX P(Il; € dv),
from which it follows that

o0
P(T>1) = / P(T, > e " dx,
0

- . 2= £
= / / P(H, € dv)e ™ dx,
o Jo

with P(H, € dv) as given earlier.

7. COMPETING-RISK AND
DEGRADATION PROCESSES

7.1 Competing Risks and Competing-Risk Processes

(22)

(23)

Loosely speaking, the teom “‘competing risks” connotes com-
peting causes of failure, and interest centers on the cause of fail-
ure and/or the time to failure given that there are several agents
compcting for an itcm’s lifetime. The issue can be quite com-
plex because the causes do not operate in isolation of one an-
other, it often being the case that one cause acerbates the effect
of the other. Traditionally, the mode] used for encapsulating
the scenario of failure under competing risks is the reliability
of a series system with independent (or dependent) component
lifetimes, the latter representing the causes of system failure.
In what follows, we shift focus from independent or depen-
dent lifetimes to independent or dependent HPs to develop a
framework that could provide a more realistic description of
the competing-risk phenomenon. Accordingly, Ict 7; denote the
time to failure of the ith component of a series system of k com-
ponents,i=1,...,k,and T the time to failure of a system. Then

PT 20 =PH\) <Xi,...,Hi(t) £ X),

whcere Hi(#) is the cumulative hazard (or risk) experienced by
the ith component and X; is its HP. If the HPs are assumed to be
independent, then

P(T > 1) =exp|—(Hi() + - -- + H ()], (24)

suggesting an additivity of the cumulative hazards (or risks). If
the HPs are assumed to be dependent, then the naturc of depen-
dence would dictate the form taken by P(T > £); see Section 5.
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In either case, our expression for P(T > t) would be the same
as what we would obtain assuming the dependence or indepen-
dence of the lifetimes T;. Thus it would appear that little, if any,
gain has been achieved by shifting focus from the 7;’s to the
X;'s. But there is another way 1o look at (24), a way with paves
the path for obtaining another expression for the survival func-
tion of an item experiencing multiple risks.

Observe that (24) is also the survival function of a single item
that has a cumulative hazard of H(¥) daf f-‘=1 H;(f), at time ¢.
But when this is the case, how can we interpret each H;()?
More generally, in the case of a single item with a cumulative
hazard of H(t), can there be a meaningful decomposition of
H(?), and, if so, can it be additive? Moreover, which of the two
perspectives more accurately reflects the competing-risk phe-
nomenon?

One possible strategy for addressing these questions is to see
each Hi(t), i=1,...,k, as the consequence of a covariate and
to suppose that if the item were to expericnce covariate { alone,
then its time to failure would coincide with the item at which
H;i(¢) crossed its hazard potential X. With the item simultane-
ously experiencing k covariates, its survival function would be

P(Tz0=PHi(1) <X,..., k() < X)
= P(X > max{H;(#), ..., He(®})
= exp(—max{Hy(),..., Hk(®}).  (25)

Clearly, under the scenario of an item simultaneously experi-
encing k causes of failure (risks), the decomposition of H(z) is
not additive.

Whereas (25) could be new to the literature on compet-
ing risks, it is worth noting that the two scenarios discussed
earlie—the traditional one involving a series system that lcads
to (24) and the one pertaining to the single item that leads to
(25)—are related because considering a single HP X is tanta-
mount to considering k£ HPs that are totally (and positivcly) de-
pendent on one another. This leads to the following result.

Theorem 4. The survival function under any series system
model for competing risks with positively dependent hazard po-
tentials is bounded as

K
exp(— ZHi(t)) =PTz0

i=1
< exp(—max{H;(), ..., Hx(8)}).

This theorem shows that the two perspcctives on competing-
risk modeling can be reconciled through the notion of indepen-
dent and dependent hazard potentials, with the left side of the
inequality reflecting the former and the right side reflecting the
latter.

7.1.1 Dependent Competing Risks and Competing Risk
Processes. ' In our discussion thus far, the H;(t)’s have been
assumed known and specified. Consequently, the matter of
independent or dependent competing risks was not germane;
dependence and independence were embodied in the context
of HPs. But the prevailing view of what constitutes depen-
dent competing risks entails considering dependent lifetimes
in the series system model mentioned earlier. We consider this
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approach circuitous. A proper framework for discussing de-
pendent competing risks requires that the H;(¢)’s be random;
a comprehensive way of doing this is to assume a stochastic -
process model {H;(t); >0}, i=1,...,k, as was done in Sec-
tion 6. We call such a model a competing-risk process, and
call the k-variate process {H;(t), ..., Hx(t); t > 0} a dependent
competing-risk process if the H;(#)’s are interdcpendent. A unit
fails when any one of the k marginal processes {H;(¢); ¢ > 0},
i=1,...,k hits the item’s HP X. Interdependence of the
H;(t)’s will induce dependence between the corresponding life-
tdmes T;, i=1,..., k. Thus the prevailing notion of what con-
stitutes dependent competing risks will be sustained, albeit
more as a consequence than as a fundamental construct. View-
ing the competing-risk scenario from the standpoint of hitting
the HP offers a convcnient platform for appreciating the phe-
nomenon of lifetimes under dependent competing risks.
Having stated the foregoing, the question still remains as
to what would be suitable models for the k-variatc process
{H1(t), ..., He(t); t > 0}, where the marginal processes {H;(t);
t>0},i=1,...,k, are such that each H;(¢) is nondecreas-
ing in £. One possibility would be to let each marginal process
be a Brownian maximum process of Section 6.2.1 and de-
duce the interdependence between the marginal processes
from the assumed dependence of the k-variate Brownian
motion process that generatc Brownian maxima processes.
The specifics remain to be worked out. Another possibility,
in the case where k = 2, is to assume that {H;(#);¢>0} is a
nonnegative, nondecreasing, and right-continuous process of
the type discussed in Section 6.2, but that the sample path of
{H,(2); t > 0} is an impulse function of the form Hy(t) =0
for all ¢ ¢*, and Hy(*) = o0, for some ¢ = ¢* > 0, where
the rate of impulse occurrence depends on the state of the
process {H(t); t > 0}. Such a model may be meaningful when
the process {H;(t); ¢t > 0} can be identified with, say, degrada-
tion and the process {H2(¢); ¢t > 0} can be identified with some
form of trauma with a rate of occurrence depending on the state
of the degradation process. Here degradation and trauma com-
pete with each other for the lifctime of thc sysicm. Lemoinc
and Wenocur (1985) and Wenocur (1989) have proposcd the
foregoing as a framework for failure modeling, although not in
the context of competing risks. With appropriate modifications,
their results could be adapted for the competing-risk scenario.

7.2 Degradation and Aging Processes

Much has been written on what is known as “degradation
modeling” and reliability assessment using degradation data.
The thinking here has been that degradation is an observable
phenomenon and that faiture occurs when the level of degrada-
tion hits some threshold (scc Doksum 1991). What the thresh-
old should be and how it should be specified has not been made
clear. Our review of the engineering and materials science lit-
erature on degradation suggests that this viewpoint is question-
able. This is because degradation is viewed as the ireversible
accumulation of damage throughout life that ultimately leads to
failure (see Bogdanoff and Kozin 1985, p. 1). Whereas the term
“damage” itself is not defined, it is claimed that damage mani-
fests as cracks, corrosion, physical wear (depletion of material),
and so on. Similarly, with regard to aging, a review of the lit-
erature on longevity and mortality indicates that aging pertains
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to a unit’s position in a state space in which the probabilities of
failure are greater than in a former position and that the mani-
festations of aging are the biomedical and physical difficulties
expericnced by older individuals.

Thus it appears that both degradation and aging are abstract
constructs that cannot be observed and thus cannot be mea-
sured. However, these constructs serve to describe a process
that results in failure and can be viewed as the cause of ob-
servables such as crack growth and corrosion, which can be
measured. Thus the question arises as to how one can math-
cmatically model the degradation phenomenon and relate it to
the observables mentioned earlier. Put another way, how can we
mathematically describe the cause and effect phenomenon of
degradation and the observables that it spawns? Our proposal
is to treat the former as a curnulative hazard process and the
latter as a covariate (or a marker) process that is influenced
by the former (sec, e.g., Whitmore, Crowder, and Lawless
1998). This viewpoint of view may fit well with Aalen’s (1987)
proposal that matters of causality be handled by stochastic
process models. As before, the item fails when the cumula-
tive hazard process hits the item’s HP X. With the foregoing
in mind, we define a degradation process as a bivariate stochas-
tic process {H(1), Z(1); t > 0}, with H(r) represcnting the unob-
scrved cumulative hazard, and Z(r) reprcscnting an observablc
marker that is a precursor to failure. In principle, {Z(z); r > 0},
the marker process, ¢an also be a vector stochastic process.
Whereas H(¢) is required to be nondecreasing, there is no such
restriction on Z(r); cracks can be repaired and sometimes do
heal.

7.2.1 Specifying Degradation Processes. 'When the marker
process can be meaningfully described by a Markov process,
for which there is some precedence when the marker is
crack growth (see Sobczyk 1987), the degradation process
{I1(t), Z(t); t = 0} can be taken to be Cinlar’s (1972) Markov
additive process (MAP). When this is the case, {II(r); t > 0} is
a Lévy process with parameters depending on the state of the
{Z(t); t = 0} process. Another way to link the two processes
in question is to use Cox’s (1972) proportional hazards model
or Aalen’s (1989) additive hazards model, in which linkage is
achieved through the processes {(r); ¢ > 0} and {Z(¥); ¢ > 0}.
The ramifications of the foregoing, as well as the MAP, remain
to be explorcd. Our main purpose here is to propose a different
approach for examining the degradation phenomenon and the
role of the HP in analyzing it.

8. THE HAZARD GRADIENT AND CONDITIONAL
HAZARD POTENTIALS

The purposes of this section are to obtain a generalization of
Theorem 1 and to further explore thc ramifications of dcpen-
dent life-lengths and dependent HPs. We start with the notion
of a “hazard gradient” and provide a strategy through which a
collection of dependent lifetimes can be replaced by a collec-
tion of independent ones.

Let T, ..., Ts, be acollection of n lifetimes, and let P(T) >
T =>1y) = R(y, ..., 1) be its survival function. Let
t = (t),..., ;) be such that R(t) > 0. The quantity H(t) =

InR(t) is the multivariate analog of H(¢). Suppose that II(t)
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has a gradient r(t) = (r1(t), ..., ra(t)), where ri(t) = a%H(t),
i=1,...,n The quantity r(t) is called the hazard gradicnt of
R(t) (see Marshall 1975a).

The relationship among I{(t), R(t), and r(u) is expressed
through

t
H(t)= / r(u)du (26)
0

and
@7

Marshall (1975a) gave a decomposition of FH(t) that is note-
worthy due to its role in allowing us to prove Theorem 5.
Specifically,

n
Ht) = / il 0, 0y duy
0

1)
., 0)duy +/ Pl ianl0)
0

b
+...+/ ra(t1y ... tne1, un)du,, (28)
o

where ri(u),0,...,0) is the failure rate of 7y at u«;, and
rity, .o tim1, 1,0, .0, 0) is the (conditional) failure rate of 7;
at u;, were itso that Ty > r1, ..., Tj—1 > ti—1.

The first term on the right side of (28) is the cumulative haz-
ard of T at¢) and is denoted by H1(r1). The second term is the
intcgral of the conditional hazard of T at i7 given that Ty > ¢y;
itis denoted by Hz(r2{r1). Similarly, the last tcrm is denoted by
H,@plt, ..., tam1). Thus

H(t) =) + Ha(talt)) + - -+ Hptalnys - -
and because R(t) = exp(—H(t)),
P(My =1, ..., Ty = tg) = expl—Hi ()] exp[—H2(r2]11)] - - -
t-1)l. (29)

Clearly, e~Hit) = P(Ty = 11), and, using arguments that par-
allel those leading us to (1), we can see that for any n > 2,

In—l)]
:P(Tnzlnlrlzll.---y

tn—l)-

x cxp{—Hu(talt1, .. .,

expl—11,(tplt1, ...

To-121-1). (30)

Let Xq,...,
Ty,...,T, and the cumulative hazards H;(r;),...,
Then, a consequence of the relationship (29) is that

P(Ty = taTy 2 11, ...,
= P(Xn = Ha(t)1X1 2 Hi(ny), .-, Xn-1 > H, —l(’n—l))
1)) (31)

Because T1, ..., T, are not independent, the HPs X, ..., X,
arc, by virtue of Remark 1, also not independent. However, the
hand side of (31) is the distribution function of an exponentially
distributed random variable, say X7}, with a scale parameter of 1,
evaluated at I1,(t,]11, ..., th—1). Thus, from (30), we have the
result that for all n > 2, '

Xn, be the HPs corresponding to the lifetimes
Hp(tn).

Ty > tn—l)

=exp[—Hn(t:]n, - ..

PIn2> T 281, ..., Thoy = 1521)
= P(Xn 211n(f,.)|X1 >H (11). oo
= P(X; = Hn(’nl’l) Ll tn—l))-

s Xn—12> Hr—l(tn—l))
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The quantity X}, is called the conditional HP of the nth item;
its unit exponential distribution is indexed by H,(t:l1, ...,
t:_1). In conirast, X,,, the HP of the nth item, has a unit ex-
ponential distribution indexed by Hu(2,).

Similarly, corresponding to each term on the right side of (28)
except the first, there exist random variables X,’z' v X, in-
dependent of one another, and also of X}, such that

P(T[ >1,..
= P(Xy > H(11))P(X3 = Ha(2]t1)) - -
X P(X* 2 Hn(tnltly oo vtll—l))'

We have now proved, as a multivariate analog to Theorem 1,
the following results.

'rTﬂZtﬂ)

Theorem 5. Corresponding to every collection of nonnega-
tive variables 71, ..., T, having a survival function R(zq, ..., t),
there exists a collection of n independent and exponentially
distributed random variables Xy, X7, ..., X3, with scale para-
meter 1; X is indexed on H; (1), and for n > 2, X is indexed
on H(thlty, ..., th=1). ’

9. SUMMARY

In this article we have described a unifying perspective on
the process leading to the failure of items that is context-
independent. This perspective is made possible through the
notion of an HP. Besides providing an alternative means of
conceptualizing the failure process, the HP provides a means
by which the nature of dependencc between the lifctimes can
be understood and exploited. With respect to the latter, we can
generate (new) families of multivariate failure distributions us-
ing multivariate exponentials with unit exponential marginals as
sceds. For items required to operate in dynamic environments,
the HP provides a vehicle by which new families of univariate
survival functions can be obtained. This is achieved by estab-
lishing a connection between 1he failure process and the killing
times of continuous and increasing stochastic processes to a
random barrier, which is the HP. The notion of a HP generalizes
to a nonexponential distribution for the barrier and also to the
multivariate case. To conclude, the importance of the notion of
a HP stems from its ability to provide a different perspective on
failure, a model for the cause of dependence of lifetimes, new
multivariate models for failure, new univariate models for sur-
vival in dynamic environments, and a perspcctive on competing
risks and degradation modeling.

This article is expository in the sense that it provides a feel
for the foregoing possibilities. Clearly, more can be done. For
one, stochastic processes other than those considered in Scc-
tion 6.2 can be investigated. We may do more on considering
covariates that drive the {H(z);t > 0} process. Another possi-
bility would be to consider bivariate processes and their killing
times by interdependcnt barricrs. In regard to the latter, onc may
also.be able to leverage the idea for assessing competing risks
by looking at the bivariate cumulative hazard process. Finally,
there is a matter of statistical inference and model validation,
topics that have not been touched on here. The possibilities of
further capitalizing the notion of an HP are promising for relia-
bility theorists, survival analysts, and actuarial scientists.

[Received November 2005. Revised June 2006.]
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